The structure and growth of the internal boundary layer which forms downstream of a sudden change from a smooth to a rough surface under zero pressure gradient conditions has been studied experimentally. To keep pressure disturbances due to the roughness change small, the level of the rough surface was depressed, so that the crest of the roughness was aligned with the level of the smooth surface. It has been found that, in the region near the change, the structure of the internal layer is largely independent of that in the almost undisturbed outer layer, whilst both the zero time delay and the moving axis integral length scales in the internal layer are significantly reduced below those on the smooth wall. The growth-rate of the internal layer is similar to that of the zero pressure gradient boundary layer, whilst the level of turbulence inside the internal layer is high because of the large turbulent energy production near the rough wall. From the mixing length results, and an analysis of the turbulent energy equation, it is deduced that the internal layer flow near the wall is not in energy equilibrium, and hence the concept of inner layer similarity breaks down. From an initially self-preserving state on the smooth wall, the turbulent boundary layer approaches a second self-preserving state on the rough wall well downstream of the roughness step.
An experimental study of the structure of the internal layer which grows down-stream from a rough-to-smooth surface change shows it to be essentially different from that studied by Antonia & Luxton (1971 b) for the case of a smooth-to-rough perturbation. The rate of growth of the internal layer is less than that for the smooth-to-rough step and it appears that the more intense initial rough-wall flow dictates the rate of diffusion of the disturbance for a considerable distance. Inside the internal layer the mixing lengthIis increased relative to the equilibrium distributionI=KY.A turbulent energy budget shows that the advection is comparable with the production or dissipation, whilst there seems to be some diffusion of energy into the internal-layer region close to the wall. The boundary layer, as a whole, recovers much more slowly following a rough-to-smooth change than following a smooth-to-rough change, and at the last measuring station (16 boundary-layer thicknesses from the start of the smooth surface) the distributions of mean velocity and Reynolds shear stress are far from self-preserving.
A continuously unstable precessing flow within a short cylindrical chamber following a large sudden expansion is described. The investigation relates to a nozzle designed to produce a jet which achieves large-scale mixing in the downstream field. The inlet flow in the plane of the sudden expansion is well defined and free from asymmetry. Qualitative flow visualization in water and semi-quantitative surface flow visualization in air are reported which identify this precession within the chamber. Quantitative simultaneous measurements from fast-response pressure transducers at four tapping points on the internal walls of the nozzle chamber confirm the presence of the precessing field. The investigation focuses on the flow within the nozzle chamber rather than that in the emerging jet, although the emerging flow is also visualized.Two flow modes are identified: a ‘precessing jet’ mode which is instantaneously highly asymmetric, and a quasi-symmetric ‘axial jet’ mode. The precessing jet mode, on which the investigation concentrates, predominates in the geometric configuration investigated here. A topologically consistent flow field, derived from the visualization and from the fluctuating pressure data, which describes a three-dimensional and time-dependent precessing motion of the jet within the chamber is proposed. The surface flow visualization quantifies the axial distances to lines of positive and negative bifurcation allowing comparison with related flows involving large-scale precession or flapping reported by others. The Strouhal numbers (dimensionless frequencies) of these flows are shown to be two orders of magnitude lower than that measured in the shear layer of the jet entering the chamber. The phenomenon is demonstrated to be unrelated to acoustic coupling.
Measurements of the flow field downstream of an upstanding step change in surface roughness are presented. The roughness has the form of two-dimensional square section ribs placed transversely across the floor of the wind tunnel with the first element upstanding from the surface. The surface upstream of the roughness is smooth and is of sufficient length to allow a fully developed smooth wall turbulent boundary layer to be established. The roughness height is approximately 6 percent of the boundary layer thickness on the smooth wall just upstream of the first roughness element. It is observed that downstream of the start of the roughness, the mean velocity profiles inside the internal layer (i.e., that part of the boundary layer which has been affected by the new inner boundary condition) exhibit a linear trend when plotted in the form U versus y1/2. Remarkably, it is also found that a linear trend is exhibited by points in the “undisturbed” boundary layer outside the internal layer when plotted in the above manner, and that the slope in the undisturbed layer differs from that in the internal layer. The undisturbed layer slope appears to depend on conditions upstream of the roughness. It is suggested that the point of inter section of the two straight lines (the “knee” point) on the U versus y1/2 plot may be used to define the edge of the internal layer. Turbulence intensity distributions and spectra are presented from which it is deduced that the internal and external layer structures are largely independent and that stream-wise length scales in the internal layer over the rough wall are reduced significantly below those at the equivalent station over a smooth wall.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.