The bonding in hard, hydrogenated, amorphous carbon films (a-C:H) prepared by plasma decomposition of benzene was investigated by high-resolution electron-energy-loss spectroscopy. In all asgrown films we find that one-third of the carbon atoms are trigonally bonded and two-thirds of the carbon atoms are tetrahedrally bonded. For the trigonally bonded part, the dielectric properties reveal a transformation from polymeric state for samples prepared with low ion energy to a more graphitic state for films prepared with higher ion energy. Upon annealing, the number of carbon atoms in sp configuration increases. The graphitization of the films is observed in two steps at 200'C and at 400 C. A closing of the optical gap and a delocalization of the m electrons is observed between 400'C and 600'C.
Unimorph heterostructures based on piezoelectric aluminum nitride (AlN) and diamond thin films are highly desirable for applications in micro- and nanoelectromechanical systems. In this paper, we present a new approach to combine thin conductive boron-doped as well as insulating nanocrystalline diamond (NCD) with sputtered AlN films without the need for any buffer layers between AlN and NCD or polishing steps. The zeta potentials of differently treated nanodiamond (ND) particles in aqueous colloids are adjusted to the zeta potential of AlN in water. Thereby, the nucleation density for the initial growth of diamond on AlN can be varied from very low (10(8) cm(-2)), in the case of hydrogen-treated ND seeding particles, to very high values of 10(11) cm(-2) for oxidized ND particles. Our approach yielding high nucleation densities allows the growth of very thin NCD films on AlN with thicknesses as low as 40 nm for applications such as microelectromechanical beam resonators. Fabricated piezo-actuated micro-resonators exhibit enhanced mechanical properties due to the incorporation of boron-doped NCD films. Highly boron-doped NCD thin films which replace the metal top electrode offer Young's moduli of more than 1000 GPa.
The authors report on the stability of mechanical stress with aging and thermal cycling for columnar structured stoichiometric and homogeneous aluminum nitride thin films grown using radio frequency magnetron sputtering technique. The set of deposition parameters were optimized for the best possible orientation of crystallites in the c axis of compositionally stoichiometric films. The as-grown stress in the slightly nitrogen-rich film does not change when exposed to the atmosphere following deposition, while that in the nitrogen-deficient film, it changes due to oxidation. Additionally, the magnitude of as-grown stress has been found to depend on the substrate material in addition to the deposition parameters. The stress in the film grown on a Si(001) substrate was more tensile than in the film grown on a semi-insulating (si) GaAs(001) substrate for a given set of deposition parameters. Furthermore, the stress in the film grown on Si decreased with temperature, while that on si GaAs increased, indicating the thermally induced stress component to be the major component in the residual stress. Upon subsequent cooling the stress changes in both substrates followed the same path as of heating, thus exhibiting no hysteresis with thermal cycles between room temperature and 400 °C
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.