MAPKAP kinase 2 (MK2) is one of several kinases that are regulated through direct phosphorylation by p38 MAP kinase. By introducing a targeted mutation into the mouse MK2 gene, we have determined the physiological function of MK2 in vivo. Mice that lack MK2 show increased stress resistance and survive LPS-induced endotoxic shock. This is due to a reduction of approximately 90% in the production of tumor necrosis factor-alpha (TNF-alpha) and not to a change in signalling from the TNF receptor. The level and stability of TNF-alpha mRNA is not reduced and TNF-alpha secretion is not affected. We conclude that MK2 is an essential component in the inflammatory response which regulates biosynthesis of TNF-alpha at a post-transcriptional level.
We demonstrate that lipopolysaccharide-induced tumor necrosis factor (TNF) biosynthesis becomes independent of MAPKAP kinase 2 (MK2) when the AU-rich element (ARE) of the TNF gene is deleted. In spleen cells and macrophages where TNF biosynthesis is restored as a result of this deletion, interleukin (IL)-6 biosynthesis is still dependent on MK2. In MK2-deficient macrophages the half-life of IL-6 mRNA is reduced more than 10-fold, whereas the half-life of TNF mRNA is only weakly decreased. It is shown that the stability of a reporter mRNA carrying the AU-rich 3-untranslated region (3-UTR) of IL-6 is increased by MK2. The data provide in vivo evidence that the AU-rich 3-UTRs of TNF and IL-6 are downstream to MK2 signaling and make MK2 an essential component of mechanisms that regulate biosynthesis of IL-6 at the levels of mRNA stability, and of TNF mainly through TNF-ARE-dependent translational control.
We describe a novel parallel method for the patterning of proteins with nanoscale resolution. Combining nanoimprint lithography (NIL) and molecular assembly patterning by lift-off (MAPL), we produced streptavidin patterns with feature sizes in the order of 100 nm. A stamp is imprinted into a heated PMMA film followed by a dry etching step that converts the topography into a PMMA/Nb 2 O 5 contrast. A biotin functionalized copolymer, poly(L-lysine)-graft-poly(ethylene glycol)-biotin (PLL-g-PEG/PEG-biotin), spontaneously adsorbs on the oxide surfaces. After PMMA lift-off, the background is backfilled with protein-resistant PLL-g-PEG. We show that streptavidin selectively adsorbs on the biotin areas and thus can be used as a universal platform for immobilization of biotin-tagged molecules. This novel process is a parallel patterning method that is fast, reproducible, and economic. The PEG-copolymer can be functionalized with a variety of bioactive groups and thus allows a great flexibility in terms of surface chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.