There is widespread concern about the quality, reproducibility and translatability of studies involving research animals. Although there are a number of reporting guidelines available, there is very little overarching guidance on how to plan animal experiments, despite the fact that this is the logical place to start ensuring quality. In this paper we present the PREPARE guidelines: Planning Research and Experimental Procedures on Animals: Recommendations for Excellence. PREPARE covers the three broad areas which determine the quality of the preparation for animal studies: formulation, dialogue between scientists and the animal facility, and quality control of the various components in the study. Some topics overlap and the PREPARE checklist should be adapted to suit specific needs, for example in field research. Advice on use of the checklist is available on the Norecopa website, with links to guidelines for animal research and testing, at https://norecopa.no/PREPARE.
There is a moral obligation to minimize pain in pigs used for human benefit. In livestock production, pigs experience pain caused by management procedures, e.g., castration and tail docking, injuries from fighting or poor housing conditions, “management diseases” like mastitis or streptococcal meningitis, and at parturition. Pigs used in biomedical research undergo procedures that are regarded as painful in humans, but do not receive similar levels of analgesia, and pet pigs also experience potentially painful conditions. In all contexts, accurate pain assessment is a prerequisite in (a) the estimation of the welfare consequences of noxious interventions and (b) the development of more effective pain mitigation strategies. This narrative review identifies the sources of pain in pigs, discusses the various assessment measures currently available, and proposes directions for future investigation.
Organophosphorus (OP) insecticide self-poisoning is responsible for about one-quarter of global suicides. Treatment focuses on the fact that OP compounds inhibit acetylcholinesterase (AChE); however, AChE-reactivating drugs do not benefit poisoned humans. We therefore studied the role of solvent coformulants in OP toxicity in a novel minipig model of agricultural OP poisoning. Gottingen minipigs were orally poisoned with clinically relevant doses of agricultural emulsifiable concentrate (EC) dimethoate, dimethoate active ingredient (AI) alone, or solvents. Cardiorespiratory physiology and neuromuscular (NMJ) function, blood AChE activity, and arterial lactate concentration were monitored for 12 h to assess poisoning severity. Poisoning with agricultural dimethoate EC40, but not saline, caused respiratory arrest within 30 min, severe distributive shock and NMJ dysfunction, that was similar to human poisoning. Mean arterial lactate rose to 15.6 [SD 2.8] mM in poisoned pigs compared to 1.4 [0.4] in controls. Moderate toxicity resulted from poisoning with dimethoate AI alone, or the major solvent cyclohexanone. Combining dimethoate with cyclohexanone reproduced severe poisoning characteristic of agricultural dimethoate EC poisoning. A formulation without cyclohexanone showed less mammalian toxicity. These results indicate that solvents play a crucial role in dimethoate toxicity. Regulatory assessment of pesticide toxicity should include solvents as well as the AIs which currently dominate the assessment. Reformulation of OP insecticides to ensure that the agricultural product has lower mammalian toxicity could result in fewer deaths after suicidal ingestion and rapidly reduce global suicide rates.
Diagnostic endoscopy in the gastrointestinal tract has remained largely unchanged for decades and is limited to the visualization of the tissue surface, the collection of biopsy samples for diagnoses, and minor interventions such as clipping or tissue removal. In this work, we present the autonomous servoing of a magnetic capsule robot for in-situ, subsurface diagnostics of microanatomy. We investigated and showed the feasibility of closed-loop magnetic control using digitized microultrasound (μUS) feedback; this is crucial for obtaining robust imaging in an unknown and unconstrained environment. We demonstrated the functionality of an autonomous servoing algorithm that uses μUS feedback, both on benchtop trials as well as in-vivo in a porcine model. We have validated this magnetic-μUS servoing in instances of autonomous linear probe motion and were able to locate markers in an agar phantom with 1.0 ± 0.9 mm position accuracy using a fusion of robot localization and μUS image information. This work demonstrates the feasibility of closed-loop robotic μUS imaging in the bowel without the need for either a rigid physical link between the transducer and extracorporeal tools or complex manual manipulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.