Many piglets are exposed to potentially painful husbandry procedures within the first week of life, including tail docking and castration, without the provision of either anesthesia or analgesia. The assessment methods used to evaluate pain experienced by piglets are often affected by low specificity and practical limitations, prompting the investigation of alternative methodologies. The assessment of changes in facial expression following a painful event has been successfully applied to several species. The objective of this pilot study was to evaluate the utility of a Grimace Scale applied to neonatal pigs to evaluate pain evoked by tail docking and castration. Eight female piglets, Sus scrofa domesticus (Landrace/Large White X synthetic sire line) underwent tail docking and 15 male piglets (75% Large White and 25% Belgian Landrace) were exposed to the castration procedure. Clear images of the faces of the piglets were collected immediately pre- and post-procedure. The images were used by experienced observers to identify facial action units (FAUs) which changed in individuals over this period, and a scoring scale was depicted in a training manual. A set of randomly selected images were then combined in a scorebook, which was evaluated after training by 30 scorers, blind to the treatment. The scale for most FAU was used with a high level of consistency across all observers. Tail docking induced a significant change (P < 0.05) in free moving piglets only in the “orbital tightening” FAU, whereas no change in any unit was observed in castrated piglets, which were restrained at the time of assessment. In this initial stage of development, orbital tightening seems to have the potential to be applied to investigate painful conditions in neonatal pigs. Nonetheless, more studies are needed to assess its full effectiveness and to evaluate the influence of possible confounds (e.g., handling stress) on the observed changes in FAUs.
There is a moral obligation to minimize pain in pigs used for human benefit. In livestock production, pigs experience pain caused by management procedures, e.g., castration and tail docking, injuries from fighting or poor housing conditions, “management diseases” like mastitis or streptococcal meningitis, and at parturition. Pigs used in biomedical research undergo procedures that are regarded as painful in humans, but do not receive similar levels of analgesia, and pet pigs also experience potentially painful conditions. In all contexts, accurate pain assessment is a prerequisite in (a) the estimation of the welfare consequences of noxious interventions and (b) the development of more effective pain mitigation strategies. This narrative review identifies the sources of pain in pigs, discusses the various assessment measures currently available, and proposes directions for future investigation.
Our data indicate that this experimental approach may be valuable for use in studies that focus on porcine cutaneous nociception.
Background: Volatile anesthetics such as isoflurane are widely used in clinical and research contexts. Concerns have been raised that the effects of these drugs on the central nervous system may result in long-term impairment after surgery or general anesthesia. Hence, this study aimed to detect how different isoflurane concentrations influence spatial learning and cell death in adult mice. Methods: Fifty-two C57BL/6 mice were randomly divided in four groups. Mice in three groups were exposed to different concentrations of isoflurane (1, 1.5, and 2%) for 1 h; the control group was not exposed to anesthesia. Five mice per group were killed 3 h after anesthesia to perform histopathologic and immunohistochemical analyses (hematoxylin-eosin staining; caspase-3 activation). Eight mice per group were used for behavioral tests (open field, T-maze spontaneous alternation, and water maze) on subsequent days. Results: There were no differences between groups in the T-maze spontaneous alternation test or in the open field (no confounding effects of stress or locomotion). The group anesthetized with 1% isoflurane performed worse in the water maze task on day 1 (550.4 Ϯ162.78 cm) compared with the control group (400.1 Ϯ 112.88 cm), 1.5% isoflurane (351.9 Ϯ 150.67 cm), and 2% isoflurane (364.5 Ϯ 113.70 cm; P Յ 0.05) and on day 3 (305.0 Ϯ 81.75 cm) compared with control group (175.13 Ϯ 77.00 cm) and 2% isoflurane (204.11 Ϯ 85.75 cm; P Յ 0.038). In the pyramidal cell layer of the region cornu ammonis 1 of the hippocampus, 1% isoflurane showed a tendency to cause more neurodegeneration (apoptosis) (61.4 Ϯ 26.40, profiles/mm 2 ) than the group with 2% of isoflurane (20.6 Ϯ 17.77, profiles/mm 2 ; P ϭ 0.051). Conclusion: Low isoflurane concentration (1%) caused spatial learning impairment and more neurodegeneration compared with higher isoflurane concentrations. Results for mice receiving the latter concentrations were similar to those of control mice.
SummaryTail docking of neonatal pigs is widely used as a measure to reduce the incidence of tail biting, a complex management problem in the pig industry. Concerns exist over the long-term consequences of tail docking for possible tail stump pain sensitivity due to the development of traumatic neuromas in injured peripheral nerves. Tail stumps were obtained post mortem from four female pigs at each of 1, 4, 8 and 16 weeks following tail amputation (approximately two-thirds removed) by a gas-heated docking iron on post natal day 3. Tissues were processed routinely for histopathological examination. Non-neural inflammatory and reparative epidermal and dermal changes associated with tissue thickening and healing were observed 1 to 4 months after docking. Mild neutrophilic inflammation was present in some cases, although this and other degenerative and non-neural reparative changes are not likely to have caused pain. Traumatic neuroma and neuromatous tissue development was not observed 1 week after tail docking, but was evident 1 month after tail docking. Over time there was marked nerve sheath and axonal proliferation leading to the formation of neuromata, which were either localized and circumscribed or comprised of multiple axons dispersed within granulation tissue. Four months after tail resection, neuroma formation was still incomplete, with possible implications for sensitivity of the tail stump.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.