We study the phenomenon of unlimited energy growth for a classical particle moving in the annular billiard. The model is considered under two different geometrical situations: static and breathing boundaries. We show that when the dynamics is chaotic for the static case, the introduction of a time-dependent perturbation allows that the particle experiences the phenomenon of Fermi acceleration even when the oscillations are periodic.
Some properties of the annular billiard under the presence of weak dissipation are studied. We show, in a dissipative system, that the average energy of a particle acquires higher values than its average energy of the conservative case. The creation of attractors, associated with a chaotic dynamics in the conservative regime, both in appropriated regions of the phase space, constitute a generic mechanism to increase the average energy of dynamical systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.