We develop a method of magnetic resonance (MR) image analysis able to provide parameter(s) sensitive to bone microarchitecture changes in aging, and to osteoporosis onset and progression. The method has been built taking into account fractal properties of many anatomic and physiologic structures. Fractal lacunarity analysis has been used to determine relevant parameter(s) to differentiate among three types of trabecular bone structure (healthy young, healthy perimenopausal, and osteoporotic patients) from lumbar vertebra MR images. In particular, we propose to approximate the lacunarity function by a hyperbola model function that depends on three coefficients, alpha, beta, and gamma, and to compute these coefficients as the solution of a least squares problem. This triplet of coefficients provides a model function that better represents the variation of mass density of pixels in the image considered. Clinical application of this preliminary version of our method suggests that one of the three coefficients, beta, may represent a standard for the evaluation of trabecular bone architecture and a potentially useful parametric index for the early diagnosis of osteoporosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.