This paper describes the use of surface plasmon resonance (SPR) spectroscopy and self-assembled monolayers (SAMs) to determine the characteristics of functional groups that give surfaces the ability to resist the nonspecific adsorption of proteins from solution. Mixed SAMs presenting different functional groups were prepared for screening using a synthetic protocol based on the reaction of organic amines with a SAM terminated by interchain carboxylic anhydride groups. Surfaces that presented derivatives of oligo(sarcosine), N-acetylpiperazine, and permethylated sorbitol groups were particularly effective in resisting the adsorption of proteins. Incorporation of these groups into single-component SAMs resulted in surfaces that are comparable to (but slightly less good than) single-component SAMs that present oligo(ethylene glycol) in their ability to resist the adsorption of proteins. In the group of surfaces examined, those that resisted the adsorption of proteins had the following properties: they were hydrophilic; they contained groups that were hydrogen-bond acceptors but not hydrogen-bond donors; and they were overall electrically neutral.
This paper describes the use of surface plasmon resonance spectroscopy and self-assembled monolayers (SAMs) of alkanethiols on gold to evaluate the ability of surfaces terminating in different combinations of charged groups to resist the nonspecific adsorption of proteins from aqueous buffer. Mixed SAMs formed from a 1:1 combination of a thiol terminated in a trimethylammonium group and a thiol terminated in a sulfonate group adsorbed less than 1% of a monolayer of two proteins with different characteristics: fibrinogen and lysozyme. Single-component SAMs formed from thiols terminating in groups combining a positively charged moiety and a negatively charged moiety were also capable of resisting the adsorption of proteins. Single-component SAMs presenting single charges adsorbed nearly a full monolayer of protein.The amount of protein that adsorbed to mixed zwitterionic SAMs did not depend on the ionic strength or the pH of the buffer in which the protein was dissolved. The amount of protein that adsorbed to singlecomponent zwitterionic SAMs increased as the ionic strength of the buffer decreased; it also decreased as the pH of the buffer increased (at constant ionic strength). Single-component zwitterionic SAMs composed of thiols terminating in N,N-dimethyl-amino-propane-1-sulfonic acid (-N + (CH3)2CH2CH2CH2SO3 -) groups were substantially more effective at resisting adsorption of fibrinogen and lysozyme from buffer at physiological ionic strength and pH than single-component zwitterionic SAMs composed of thiols terminating in phosphoric acid 2-trimethylamino-ethyl ester (-OP(O)2 -OCH2CH2N + (CH3)3). Several of these zwitterionic SAMs were comparable to the best known systems for resisting nonspecific adsorption of protein.
This paper describes an experimentally simple system for measuring rates of electron transport across organic thin films having a range of molecular structures. The system uses a metal--insulator--metal junction based on self-assembled monolayers (SAMs); it is particularly easy to assemble. The junction consists of a SAM supported on a silver film (Ag-SAM(1)) in contact with a second SAM supported on the surface of a drop of mercury (Hg-SAM(2))--that is, a Ag-SAM(1)SAM(2)-Hg junction. SAM(1) and SAM(2) can be derived from the same or different thiols. The current that flowed across junctions with SAMs of aliphatic thiols or aromatic thiols on Ag and a SAM of hexadecane thiol on Hg depended both on the molecular structure and on the thickness of the SAM on Ag: the current density at a bias of 0.5 V ranged from 2 x 10(-10) A/cm(2) for HS(CH(2))(15)CH(3) on Ag to 1 x 10(-6) A/cm(2) for HS(CH(2))(7)CH(3) on Ag, and from 3 x 10(-6) A/cm(2) for HS(Ph)(3)H (Ph = 1,4-C(6)H(4)) on Ag to 7 x 10(-4) A/cm(2) for HSPhH on Ag. The current density increased roughly linearly with the area of contact between SAM(1) and SAM(2), and it was not different between Ag films that were 100 or 200 nm thick. The current--voltage curves were symmetrical around V = 0. The current density decreased with increasing distance between the electrodes according to the relation I = I(0)e(-beta d(Ag,Hg)), where d(Ag,Hg) is the distance between the electrodes, and beta is the structure-dependent attenuation factor for the molecules making up SAM(1). At an applied potential of 0.5 V, beta was 0.87 +/- 0.1 A(-1) for alkanethiols, 0.61 +/- 0.1 A(-1) for oligophenylene thiols, and 0.67 +/- 0.1 A(-1) for benzylic derivatives of oligophenylene thiols. The values of beta did not depend significantly on applied potential over the range of 0.1 to 1 V. These junctions provide a test bed with which to screen the intrinsic electrical properties of SAMs made up of molecules with different structures; information obtained using these junctions will be useful in correlating molecular structure and rates of electron transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.