In order to understand the radiative recombination mechanisms in silicon oxides, photoluminescence properties (PL) of H-rich amorphous silicon oxide thin films grown in a dual-plasma chemical vapor deposition reactor have been related to a number of stoichiometry and structure characterizations (x-ray photoelectron spectroscopy, vibrational spectroscopy, and gas evolution studies). The visible photoluminescence at room temperature from a-SiOx:H matrixes with different compositions, including different bonding environments for H atoms, has been studied in the as-deposited and annealed states up to 900 °C. Three commonly reported PL bands centered around 1.7, 2.1, and 2.9 eV have been detected from the same type of a-SiOx:H material, only by varying the oxygen content (x = 1.35, 1.65, and 2). Temperature quenching experiments are crucial to distinguish the 1.7 eV band, fully consistent with bandtail-to-bandtail recombination, from the radiative defect luminescence mechanisms attributed either to defects related to Si–OH groups (2.9 eV) or to oxygen-vacancy defects (2.1 eV). In the latter case, a red-shift of the PL peak energy as a function of annealing temperature is probably attributed to some matrix-induced strain effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.