The modulation instability of a circularly polarized laser pulse in a magnetized non-Maxwellian plasma is investigated. Based on a relativistic fluid model, the nonlinear interaction of an intense circularly polarized laser beam with a non-Maxwellian magnetized plasma is described. Nonlinear dispersion relation and growth rate of the instability for left- and right-hand polarizations are derived. The effect of temperature, external magnetic field, value of Kappa and state of polarization on the growth rate are analyzed. It is shown that the growth rate increases with increase in the magnetic field for the right-hand polarization and inversely it decreases for the left-hand one. Also it is observed that existence of super-thermal particles causes the decrease in the growth.
The nonlinear dynamics of a circularly polarized laser pulse propagating in magnetized plasma contains hot nonextensive q-distributed electrons and ions is studied theoretically. A nonlinear equation which describes the dynamics of the slowly varying amplitude electromagnetic wave is obtained using the relativistic twofluids model. Some nonlinear phenomena include modulational instability, self-focusing, soliton formation, and longitudinal and transversal evolutions of laser pulse in nonextensive plasma medium are investigated. Results show that the nonextensivity of particles can substantially change the nonlinearity of medium. The external magnetic field enhances the modulation instability growth rate of right-hand polarization wave but for the left-hand polarization the growth rate decreases. The spot size of the laser pulse is strongly affected by the plasma nonextensivity.
The nonlinear dynamics of a circularly polarized laser pulse propagating in the magnetized plasmas whose constituents are superthermal ions and mixed nonthermal high-energy tail electrons is studied theoretically. A nonlinear equation which describes the dynamics of the slowly varying amplitude is obtained using a relativistic two-fluid model. Based on this nonlinear equation and taking into account some nonlinear phenomena such as modulational instability, self-focusing and soliton formation are investigated. Effect of the magnetized plasma with superthermal ions and mixed nonthermal high-energy tail electrons on these phenomena is considered. It is shown that the nonthermality and superthermality of particles can substantially change the nonlinearity of medium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.