From the stone ages to modern history, new materials have often been the enablers of revolutionary technologies.[1] For a wide variety of envisioned applications in space exploration, energy-efficient aircraft, and armor, materials must be significantly stronger, stiffer, and lighter than what is currently available. Carbon nanotubes (CNTs) have extremely high strength, [2][3][4][5] very high stiffness, [6,7] low density, good chemical stability, and high thermal and electrical conductivities.[8]These superior properties make CNTs very attractive for many structural applications and technologies. Here we report CNT fibers that are many times stronger and stiffer per weight than the best existing engineering fibers and over twenty times better than other reported CNT fibers. Additionally, our CNT fibers are nonbrittle and tough, making them far superior to existing materials for preventing catastrophic failure. These new CNT fibers will not only make tens of thousands of products stronger, lighter, safer, and more energy efficient, but they will also bring to fruition many envisioned technologies that have been to date unavailable because of material restrictions. Strong, stiff, and lightweight are critical property requirements for materials that are used in the construction of space shuttles, airplanes, and space structures. These properties are assessed by a material's specific strength and specific stiffness, which are defined as the strength or stiffness (Young's modulus) of a material divided by its density.[9] The combination of high strength, high stiffness, and low density affords CNTs with extremely high values for specific strength and specific stiffness. The most effective way to utilize these properties is to assemble CNTs into fibers. However, despite extensive worldwide efforts to date, the specific strength and specific stiffness of CNT fibers that have been reported by various research groups are much lower than currently available commercial fibers. [10][11][12][13][14][15][16][17][18][19][20][21][22] In early studies, researchers attempted to reinforce polymer fibers with short CNTs, but the reinforcement was limited by several issues, including poor dispersion, poor alignment, poor load transfer, and a low CNT volume fraction. [10][11][12][13][14][15] Recently, pure CNT fibers (also called yarns)were reported with and without twisting. [16][17][18][19][20][21][22] For example, Zhang et al. [20] demonstrated that spinning from aligned CNT arrays could significantly improve the strength of CNT fibers by twisting them. However, to date no breakthrough has been reported in the specific strength and specific stiffness of CNT fibers.Here we report CNT fibers with values for specific strength and specific stiffness that are much higher than values reported for any current engineering fibers as well as previously reported CNT fibers. As shown in Figure 1, the specific strength COMMUNICATION 4198
Arrays of well‐aligned, ca. 4.7 mm long carbon nanotubes (CNTs) are grown in a simple, safe, and cost‐effective manner using an efficient Al2O3/Fe catalyst prepared by an ion‐beam assisted deposition technique (see figure). Importantly, the as‐synthesized CNT arrays with lengths ranging from 500 μm to 1.5 mm are conducive to spinning, and CNT fibers spun from such long CNT arrays show remarkably improved tensile strength.
Epitaxial c-axis oriented BiFeO3 (BFO) thin films were deposited on (001) Nb-doped SrTiO3 (Nb-STO) substrates by pulsed laser deposition. Introducing Bi vacancies caused the BFO thin film to evolve to a p-type semiconductor and formed a p-n heterojunction with an n-type semiconductor Nb-STO. The current density versus voltage (J-V) and capacitance versus voltage (C-V) characteristics of the heterojunction were investigated. A typical rectifying J-V effect was observed with a large rectifying ratio of 5×104. Reverse C-V characteristics exhibited a linear 1∕C2 versus V plot, from which a built-in potential of 0.6V was deduced. The results show a potential application of BFO/Nb-STO heterojunction for oxide electronics.
Epitaxial c-axis oriented BiFeO3 (BFO) thin films were deposited on conductive SrRuO3 (SRO) on (001) SrTiO3 substrates by pulsed laser deposition. A Pt/BFO/SRO capacitor was constructed by depositing a top Pt electrode. The leakage current density versus. electric field characteristics were investigated from 80to350K. It was found that the leakage mechanisms were a strong function of temperature and voltage polarity. At temperatures between 80 and 150K, space-charge-limited current was the dominant leakage mechanism for both negative and positive biases. On the other hand, at temperatures between 200 and 350K the dominant leakage mechanisms were Poole-Frenkle emission and Fowler-Nordheim tunneling for negative and positive biases, respectively.
Second generation, high-temperature superconducting wires are based on buffered, metallic tape substrates of near single crystal texture. Strong alignment of adjacent grains was found to be necessary from previous work that suggested large angle, YBa2Cu3O7−δ [001]-tilt boundaries reduce Jc exponentially with increasing misorientation angle (θ). We pursue the low-θ regime by evaluating single grain boundaries (GB) and biaxially aligned polycrystalline films utilizing both the rolling-assisted biaxially textured substrates and ion-beam assisted deposition coated conductor architectures. Analysis concludes that an exponential dependence on Jc is applicable for θ≳4°, where the spacing between the periodic disordered regions along the GB become smaller than a coherence length.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.