A semi-empirical machining theory is described for predicting cutting forces and temperatures for oblique nose radius tools from cutting conditions and a knowledge of work material flow stress and thermal properties. Predictions are made for a range of cutting speeds and tool geometries. It is shown how the cutting conditions giving a built-up edge can be determined from the predicted cutting temperatures. A comparison between predicted and experimental results shows good agreement.
A method is described for calculating the chip flow direction in terms of the tool cutting edge geometry and cutting conditions. By defining an equivalent cutting edge based on the chip flow direction it is shown how cutting forces can be predicted under finishing conditions when the work material’s flow stress and thermal properties are known. A comparison between predicted and experimental results obtained for a range of tool geometries and cutting conditions shows good agreement. Surface roughness Ra values measured in the tests are compared with the theoretical values determined from the nose radius and feed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.