A collaboration of SCK•CEN, IAP and BEVATECH GmbH is currently constructing the room temperature CH section of the 16.6 MeV CW proton injector for the MYRRHA project. The elaboration of all the construction readiness files for the construction of the accelerating cavities of the first CH section (1.5 to 5.9 MeV) is ongoing. In parallel, the planning, development and fabrication of all further components of this accelerator section is in progress, while the full study for the remaining section is under preparation. This contribution is documenting the most recent status.
Heat flow studies were conducted in January–February 1987, off the Atlantic Coast of Mexico on board the R/V Akademik Nikolai Strakhov. Two areas were surveyed, one transecting the Salt Dome Province and the Campeche Canyon, in the Gulf of Mexico, and the other, on the eastern flank of the Yucatan Peninsula. Conductive heat flow through the bottom sediments was determined as the product of vertical temperature gradient and in situ thermal conductivity, measured with a thermal probe using a multithermistor array and real‐time processing capabilities. Forward two‐dimensional modeling allows us to estimate heat flow variations at both sites from local disturbances and to obtain average heat flow values of 51 mW/m2 for the transect within the Gulf of Mexico and 38 and 69 mW/m2 for two basins within the Yucatan area. Sea bottom relief has a predominant effect over other environmental factors in the scatter of heat flow determination in the Gulf of Mexico.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.