A detailed analysis of the photophysical behaviour of uranyl ion in aqueous solutions at room temperature is given using literature data, together with results of new experimental and theoretical studies to see whether the decay mechanism of the lowest excited state involves physical deactivation by energy transfer or a chemical process through hydrogen atom abstraction. Comparison of the radiative lifetimes determined from quantum yield and lifetime data with that obtained from the Einstein relationship strongly suggests that the emitting state is identical to that observed in the lowest energy absorption band. From study of the experimental rate and that calculated theoretically, from deuterium isotope effects and the activation energy for decay support is given to a deactivation mechanism of hydrogen abstraction involving water clusters to give uranium(v) and hydroxyl radicals. Support for hydroxyl radical formation comes from electron spin resonance spectra observed in the presence of the spin traps 5,5-dimethyl-1-pyrroline N-oxide and tert-butyl-N-phenylnitrone and from literature results on photoinduced uranyl oxygen exchange and photoconductivity. It has previously been suggested that the uranyl emission above pH 1.5 may involve an exciplex between excited uranyl ion and uranium(v). Evidence against this mechanism is given on the basis of quenching of uranyl luminescence by uranium(v), together with other kinetic reasoning. No overall photochemical reaction is observed on excitation of aqueous uranyl solutions, and it is suggested that this is mainly due to reoxidation of UO2+ by hydroxyl radicals in a radical pair. An alternative process involving oxidation by molecular oxygen is analysed experimentally and theoretically, and is suggested to be too slow to be a major reoxidation pathway.
Our previous investigations showed that homolytic reactions of C 60 with a number of perfluoroorganic and organomercury(II) compounds occurring under electron impact (EI) in the ionization chamber (IC) of a mass spectrometer could predict the reactivity of C 60 towards these compounds in solution or solid state. To expand the scope of this statement, C 60 and C 70 have been reacted with ketones RCOR 1 , where R and R 1 are alkyl, aryl, benzyl, and CF 3 , in an IC under EI to yield products of the addition of R · and R 1 · radicals to the fullerenes, paramagnetic ones being stabilized by hydrogen addition and loss. Experimental evidence in support of a mechanism involving homolytic dissociation of ketone molecules via superexcited states to afford these radicals that react with the fullerenes at the IC surface has been obtained. As anticipated, the reactions between C 60 and several ketones conducted in solution under UV irradiation have afforded Me-, Ph-, and CF 3 -derivatives of C 60 . However, some other products have been identified by mass spectrometry and their formation is reasonably explained. When decalin has been employed as a solvent, decalinyl derivatives of the fullerene have been found among the products and the (9-decalinyl)fullerenyl radical has been registered by EPR. Thus, incomplete but reasonable conformity of the results of the reactions of fullerenes with ketones in an IC under EI with those of the reactions of the same reagents in solution under UV irradiation has been demonstrated, and the former results can predict the latter ones to a reasonable extent.
The rate constants of addition of the "CMe 3, "CH2Me, "CH2(CH2)3Me, "CH2Ph, 9 CH2CH=CH1, and "CH(Me)Et radicals to fullerene C60 were determined by the method of competitive addition of free radicals to spin traps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.