As chip design becomes more and more complex and alternative lithography technologies like EBDW get broader usage, the challenges increase with respect to all parts of the entire process. For exposure data preparation, we want to introduce a novel solution that offers new approaches to a user-friendly GUI, to exposure simulation, project definition and control, combined with proven kernels for data post-processing, fracturing and Proximity Effect Correction. This new solution has been implemented to run in an efficient 64 bit parallel computing environment and is called ePlace (eBeam Direct Write and Mask Data Preparation Layout Console). ePlace has the ability to process layout data of (in principle) unlimited size, given in various formats (GDSII, OASIS, DXF, CIF and others) and distributed over multiple files and hierarchies. Data post-processing capabilities include common Boolean functions (AND, OR, XOR, and Negation) as well as sizing, scaling, translation, rotati on and overlap removal. Processed data can be fractured and formatted for ebeam writers (e.g. Vistec Shaped Beam (SB) tools). For Proximity Effect Correction both dose variations and newly developed geometry correction (EPC) algorithms are available and a simulation engine provides fast and precise results for exposure pattern predictions. In addition to the standard shape exposure, ePlace supports the latest Cell Projection (CP) feature of current Vistec's SB series as well as the upcoming Vistec Multi-Beam-Tool
At the EMLC 2009 in Dresden the data preparation package ePLACE was already presented. This package has been used for quite different applications covering mask write, direct write and special applications. In this paper we will disclose results achieved when using the ePLACE package for processing of layout data of immediate interest. During the evaluation phase of the new solution we could benefit from broad experience we collected over many years with the fracture performance of the MGS software, which is one core element of today's ePLACE package. A key interest of this paper is the investigation of the scalability of computing solutions as a cost-effective approach when processing huge data volumes with the new solution. This is reflected against current state-of-the-art data processing tasks being part of both mask write and direct write applications. Furthermore, we evaluated visualization and simulation possibilities of the ePLACE package with respect to its use with latest layouts in various applications. The improved performance of the data preparation package including its adaptation to new e-beam lithography options, as, for instance, the incorporation of the cell projection capability or the newly developed Multi Shaped Beam (MSB) technology, will be also discussed. As an example the matching of the data path with a Vistec SB3055 will be outlined. Processing of Design For E-Beam (DFEB) data (including cell contents) and their conversion to real exposure data is reported. The advantages of the parallel use of standard shaped beam und cell projection technologies are highlighted focussing on latest writing time yields achieved when applying the CP feature
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.