In this paper, we present results from an Institut de Radio Astronomie Millimétrique (IRAM) Plateau de Bure millimetre‐wave Interferometer (PdBI) survey for carbon monoxide (CO) emission towards radio‐detected submillimetre galaxies (SMGs) with known optical and near‐infrared spectroscopic redshifts. Five sources in the redshift range z∼ 1–3.5 were detected, nearly doubling the number of SMGs detected in CO. We summarize the properties of all 12 CO‐detected SMGs, as well as six sources not detected in CO by our survey, and use this sample to explore the bulk physical properties of the submillimetre galaxy (SMG) population as a whole. The median CO line luminosity of the SMGs is 〈L′CO〉= (3.8 ± 2.0) × 1010 K km s‐1 pc2. Using a CO‐to‐H2 conversion factor appropriate for starburst galaxies, this corresponds to a molecular gas mass 〈M(H2)〉= (3.0 ± 1.6) × 1010 M⊙ within an ∼ 2 kpc radius, approximately 4 times greater than the most luminous local ultraluminous infrared galaxies (ULIRGs) but comparable to that of the most extreme high‐redshift radio galaxies (HzRGs) and quasi‐sellar objects (QSOs). The median CO FWHM linewidth is broad, 〈FWHM〉= 780 ± 320 km s−1, and the SMGs often have double‐peaked line profiles, indicative of either a merger or a disc. From their median gas reservoirs (∼ 3 × 1010 M⊙) and star formation rates (≳ 700 M⊙ yr−1), we estimate a lower limit on the typical gas‐depletion time‐scale of ≳ 40 Myr in SMGs. This is marginally below the typical age expected for the starbursts in SMGs and suggests that negative feedback processes may play an important role in prolonging the gas consumption time‐scale. We find a statistically significant correlation between the far‐infrared and CO luminosities of the SMGs, which extends the observed correlation for local ULIRGs to higher luminosities and higher redshifts. The non‐linear nature of the correlation implies that SMGs have higher far‐infrared to CO luminosity ratios and possibly higher star formation efficiencies (SFEs), than local ULIRGs. Assuming a typical CO source diameter of θ∼ 0.5 arcsec (D∼ 4 kpc), we estimate a median dynamical mass of 〈Mdyn〉≃ (1.2 ± 1.5) × 1011 M⊙ for the SMG sample. Both the total gas and stellar masses imply that SMGs are very massive systems, dominated by baryons in their central regions. The baryonic and dynamical properties of these systems mirror those of local giant ellipticals and are consistent with numerical simulations of the formation of the most massive galaxies. We have been able to impose a lower limit of ≳ 5 × 10−6 Mpc−3 to the comoving number density of massive galaxies in the redshift range z∼ 2–3.5, which is in agreement with results from recent spectroscopic surveys and the most recent model predictions.
We analyze subarcsecond resolution interferometric CO line data for 12 submillimeter-luminous (S 850 μm 5 mJy) galaxies with redshifts between 1 and 3, presenting new data for 4 of them. Morphologically and kinematically, most of the 12 systems appear to be major mergers. Five of them are well-resolved binary systems, and seven are compact or poorly resolved. Of the four binary systems for which mass measurements for both separate components can be made, all have mass ratios of 1:3 or closer. Furthermore, comparison of the ratio of compact to binary systems with that observed in local ULIRGs indicates that at least a significant fraction of the compact submillimeter-luminous galaxies (SMGs) must also be late-stage mergers. In addition, the dynamical and gas masses we derive are most consistent with the lower end of the range of stellar masses published for these systems, favoring cosmological models in which SMGs result from mergers. These results all point to the same conclusion that most of the bright SMGs with L IR 5 × 10 12 L are likely major mergers.
We report IRAM millimeter interferometry of three z ∼2.4 to 3.4, SCUBA deep field galaxies. Our CO line observations confirm the rest-frame UV/optical redshifts, thus more than doubling the number of confirmed, published redshifts of the faint submm-population and proving their high-z nature. In all three sources our measurements of the intrinsic gas and dynamical mass are large (10 10 to 10 11 M ⊙ ). In at least two cases the data show that the submm sources are part of an interacting system. Together with recent information gathered in the X-ray, optical and radio bands our observations support the interpretation that the submm-population, at least the radio detected ones, consists of gas rich (gas to dynamical mass ratio ∼0.5) and massive, interacting starburst/AGN systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.