The current study focuses on 1-butyl-3-methylimidazolium tetrafluoroborate, [bmim][BF 4 ], and 1-butyl-3-methylimidazolium hexafluorophosphate, [bmim][PF 6 ]. The objective is to study the influence of pressure as well as that of the anion on several properties of this type of ionic liquid. The speed of sound and densities in pure ionic liquids (ILs) as a function of temperature and pressure have been determined. Several other thermodynamic properties such as compressibilities, expansivities, and heat capacities have been obtained. To the best of our knowledge, this research comprises both the first speed of sound data and the first evaluation of heat capacities at high pressures for ILs. Speed of sound measurements have been carried out in broad ranges of temperature (283 < T/K < 323) and pressure (0.1 < p/MPa < 150), sometimes inside the metastable liquid region using a nonintrusive microcell. The T-P melting line of [bmim][PF 6 ] has also been determined by an acoustic method. Density measurements have been performed for broad ranges of temperature (298 < T/K < 333) and pressure (0.1 < p/MPa < 60) using a vibrating tube densimeter. The pressure dependence of the heat capacities, which is generally mild, is found to be highly dependent on the curvature of the temperature dependence of the density.
Aqueous solutions of a copolymer derivative of a polyacrylamide showed very interesting behavior, that in which the system evolves from one kind of double criticality (pressure-hypercritical point) to another (temperature-hypercritical point) as polymer molecular weight decreases. While in the neighboring region of the former point one expects a change from contraction to expansion upon mixing with increasing pressure; in the latter, mixing should be accompanied by a change in the sign of the excess enthalpy as temperature increases. L-L equilibria studies were performed in a wide range of (T, p) experimental conditions (300 < T/K < 460, 0 < p/bar < 700). Poly(N-isopropylacrylamide), usually called PNIPAAM, and its copolymer derivative poly(N-isopropylacrylamide/1-deoxy-1-methacrylamido-D-glucitol), herein referred to as CP, were investigated for several chain lengths and compositions. An He/Ne laser light scattering technique was used for the determination of cloud-point (T, p, x) conditions. The experimental results were used to assist in the determination of computed values at temperatures beyond experimental accessibility, which are obtained by the application of a modified Flory-Huggins model. The model also estimates the excess properties of these solutions. Because of the intrinsic selfassociating nature of these systems, all studied solutions show a lower critical solution temperature (LCST). Both modeling results and H/D isotope substitution effects suggest also the existence of upper critical solution temperatures (UCST) and therefore closed-loop-type phase diagrams. However, these upper-temperature branches are experimentally inaccessible. Pressure effects are particularly interesting. For a low-MW CP, experimental data display a tendency toward a reentrant T-p locus, which supports the conjecture that these systems are inherently of the closed-loop type. In the cases of PNIPAAMs and high-MW CPs, the T-p isopleths show extrema. The copolymer aqueous solutions under study in this work model a single chemical system where pressure-hypercritical behavior evolves to a temperaturehypercritical one as the chain length decreases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.