In the European Union, the demand for polyurethane is continually growing. In 2017, the estimated production value of polyurethane was 700,400T, of which 27.3% is taken to landfill, which causes an environmental problem. In this paper the behaviour of various polyurethane foams from the waste of different types of industries will be analysed with the aim of assessing their potential use in construction materials. In order to this, the wastes were chemically tested by means of CHNS, TGA, and leaching tests. They were tested microstructurally by means of SEM. The processing parameters of the waste was calculated after finding out its granulometry and its physical properties i.e. density and water absorption capacity. In addition, the possibility of incorporating these wastes in plaster matrices was studied by determining its rendering in an operational context, finding out its mechanical resistance to flexion and compression at 7 days, its reaction to fire as well as its weight per unit of area and its thermal behaviour. The results show that in all cases, the waste is inert and does not undergo leaching. The generation process of the waste determines the foam’s microstructure in addition to its physical-chemical properties that directly affect building materials in which they are included, thus offering different ways in which they can be applied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.