Two experiments were conducted to determine the CP concentration below which N retention and growth performance are reduced when low-protein, amino acid-supplemented, corn-soybean meal diets are fed. In a N balance trial (Exp. 1), 12 gilts (initial weight 41 kg) were fitted with urinary catheters and fed six different diets during three 7-d periods in an incomplete block design. The diets were: 1) 18% CP; 2) 14% CP + AA, 3) 16% CP; 4) 12% CP + AA; 5) 14% CP; and 6) 10% CP + AA. Amino acids (lysine, threonine, tryptophan, and methionine) were supplemented such that the concentrations in the low-protein diets were equal to those in their standard (4% CP higher) counterparts. Nitrogen retention (g/d) decreased (P < 0.01) as CP decreased, in both standard (27.10, 24.53, and 20.99) and low-protein (21.51, 19.18, and 15.83) diets, but was lower (P < 0.01) in low-protein diets. There were no differences among treatments (P > 0.05) in biological value (68.2% standard vs 71.0% low-protein). In a growth performance trial (Exp. 2), 36 gilts (initial weight 19.5 kg) were penned individually and fed one of six diets for 35 d in a randomized complete block design. Dietary treatments were a 16% CP standard diet and low-protein diets formulated to contain 15, 14, 13, 12, and 11% CP supplemented with crystalline lysine, tryptophan, threonine, and methionine to equal the total concentrations in the standard diet. Protein concentration affected (P < or = 0.05) ADG, ADFI, feed efficiency, fat-free lean gain, longissimus muscle area, plasma urea, and plasma concentrations of most essential AA. For most of these traits, the major difference was poor performance of pigs fed the 11% CP diet. Thus, in Exp. 1, at AA concentrations from deficient to excess, low-protein, amino acid-supplemented diets failed to produce the same N retention as the equivalent corn-soybean meal diets. However in Exp. 2, the same performance was obtained with 16, 15, 14, 13, and 12% CP. Based on these data, we suggest that N balance is more sensitive than growth to amino acid adequacy andthat other AA (e.g., isoleucine and valine) may limit growth performance when the protein concentration is reduced by more than four percentage units.
Two experiments, each with 36 barrows with high-lean-gain potential, were conducted to evaluate apparent nutrient digestibilities and performance and plasma metabolites of pigs fed corn-soybean meal diets (CONTROL) and low-protein diets. The low-protein diets were supplemented with crystalline lysine, threonine, tryptophan, and methionine either on an ideal protein basis (IDEAL) or in a pattern similar to that of the control diet (AACON). Amino acids were added on a true ileally digestible basis. The initial and final BW were, respectively, 31.5 and 82.3 kg in Exp. 1 and 32.7 and 57.1 kg in Exp. 2. In Exp. 1, the CONTROL and IDEAL diets were offered on an ad libitum basis or by feeding 90 or 80% of ad libitum intake. Pigs were fed for 55 d. In Exp. 2, the CONTROL, IDEAL, and AACON diets were offered on an ad libitum basis or by feeding 80% of the ad libitum intake. Pigs were fed for 27 d. Pigs fed the CONTROL diet had greater (P < 0.05) ADG and feed efficiency (G/F) than pigs fed the IDEAL (Exp. 1 and 2) and AACON diets (Exp. 2). As the level of feed intake decreased, ADG decreased (P < 0.05), but G/F tended to improve (P < 0.10) for pigs fed 90% of ad libitum in Exp. 1 and for pigs fed 80% of ad libitum in Exp. 2. In Exp. 1, the apparent total tract digestibilities of DM and energy were greater (P < 0.01) for pigs fed the IDEAL diet than for pigs fed the CONTROL diet. In Exp. 2, the apparent total tract digestibility of protein was greatest in pigs fed the CONTROL diet (P < 0.05) and was greater (P < 0.05) in pigs fed the AACON diet than in pigs fed the IDEAL diet. Plasma urea concentrations were lower in pigs fed the IDEAL diet than in pigs fed the CONTROL diet, regardless of feeding level. For pigs fed the CONTROL diet, plasma urea concentrations were lower when feed intake was 80% of ad libitum (diet level, P < 0.01). In summary, pigs fed the IDEAL and the AACON diets gained less and had lower plasma urea concentrations than pigs fed the CONTROL diet. Based on these data, it seems that the growth potential of pigs fed the IDEAL and AACON diets may have been limited by a deficiency of lysine, threonine, and(or) tryptophan and that the amino acid pattern(s) used was not ideal for these pigs.
Two experiments, each with 39 high-lean-gain potential barrows, were conducted to evaluate the organ weights, body chemical composition, and tissue accretion rates of pigs fed corn-soybean meal diets (CONTROL) and low-protein diets supplemented with crystalline lysine, threonine, tryptophan, and methionine either on an ideal protein basis (IDEAL) or in a pattern similar to that of the control diet (AACON). Amino acids were added on a true ileally digestible basis. The initial and final BW were, respectively, 31.5 and 82.3 kg in Exp. 1 and 32.7 and 57.1 kg in Exp. 2, and pigs were fed for 55 and 27 d in Exp. 1 and 2, respectively. In Exp. 1, the CONTROL and IDEAL diets were offered on an ad libitum basis, or by feeding 90 or 80% of ad libitum intake. In Exp. 2, the CONTROL, IDEAL, and AACON diets were offered on an ad libitum basis, or by feeding 80% of the ad libitum intake. Three pigs were killed at the start of the experiments and three from each treatment were killed at the end of each experiment to determine body chemical composition. In both trials, the whole-body protein concentration (g/kg) and the accretion rates of protein (g/d) were greater (P < 0.05) for pigs fed the CONTROL than for pigs fed the IDEAL and AACON diets. In Exp. 1, pigs fed the CONTROL diet had a trend (P < 0.10) for greater water and lower lipid concentration and had greater (P < 0.05) water and ash accretion rates. Whole-body protein concentration was greatest (P < 0.05) in pigs fed at 80% of ad libitum, but protein, water, and ash accretion rates were greatest (P < 0.05) in pigs allowed ad libitum access to feed. In summary, pigs fed the IDEAL and the AACON diets had less protein in the body and lower protein accretion rates than pigs fed the CONTROL diet. It seems that reductions in protein deposition in pigs fed the IDEAL and AACON diets may have been due to a deficiency of one or more essential amino acids or possibly to increases in the NE for metabolic processes leading to increases in adipose tissue deposition.
Two experiments were conducted to identify factors involved in the growth retardation of pigs housed in groups. In each experiment, 60 gilts were allotted to two treatments in a randomized complete block design. Twelve gilts were penned individually with one feeder, one waterer, and a space allowance of 1.5 m2 per pen. Forty-eight gilts were allocated to 12 groups of four and penned together with four feeders, four waterers, and a space allowance of 6 m2 per pen. In Exp. 1 there were 60 growing gilts (initial and final BW of 17.9 and 50.8 kg, respectively), and in Exp. 2 there were 60 finishing gilts (initial and final BW of 46.0 and 118.3 kg, respectively). In Exp. 1 there was a trend (P < .10) toward greater final BW, ADG, and average backfat thickness of gilts penned individually. Apparent digestibilities of DM, CP, and energy tended (P < .10) to be greater and plasma NEFA concentrations were lower (P < .05) for gilts penned individually. Plasma concentrations of urea and glucose were similar between treatments. In Exp. 2, ADG was greater (P < .05) and there was a trend (P < .10) for greater final weight, ADFI, loin weight, and primal cut weight of gilts penned individually. Apparent digestibilities of DM, CP, and energy and the plasma concentrations of urea, glucose, and NEFA were similar in both treatments. In summary, growing gilts penned four per group had reductions in daily gain, backfat thickness, and apparent digestibilities of DM, CP, and energy and increases in plasma NEFA concentrations. Finishing gilts penned four per group had reductions in daily gain and feed intake with no changes in apparent nutrient digestibilities or plasma metabolite concentrations compared to individually penned gilts.
. 2001. Presence of fed β β-carotene in digesta, excreta, blood and hepatic and adipose tissues of Holstein steers. Can. J. Anim. Sci. 81: 133-139. Eight animals were fed a diet without added β-carotene for 49 d and then supplemented with four levels of β-carotene (0, 5.5, 44 or 352 mg kg -1 dry matter) for 30 d; the two-phase procedure was then repeated. Steers were killed at the end of the second period. Concentrations of β-carotene were: 0, 0, 227.2 and 2011 µg dL -1 (P < 0.05) in ruminal fluid; 0, 0, 533.7 and 4418 µg dL -1 (P < 0.05) in duodenal fluid; 0, 4.03, 14.91 and 90.64 µg g -1 (P < 0.05) in dry faeces; 0.8, 1.2, 4.7 and 8.1 µg g -1 (P < 0.05) in liver; 0.07, 0.15, 0.5 and 3.7 µg g -1 (P < 0.05) in subcutaneous fat; 0, 0, 0.09 and 0.23 µg g -1 (P < 0.05) in kidney fat for dietary treatments with 0, 5.5, 44 and 352 mg β-carotene kg -1 DM, respectively. The dose of β-carotene was reflected in retinol concentrations in liver: 101.1, 113.6, 161.7 and 199.6 µg g -1 (P < 0.05), but not in subcutaneous or kidney fat (P > 0.1). The estimated β-carotene digestibilities were 66.25, 84.39 and 88.14% for treatments with 5.5, 44 and 352 mg β-carotene kg -1 DM, respectively (P < 0.01). The results suggest a high capacity of bovine tissues to store β-carotene and probably a limited capability to convert β-carotene into vitamin A. 1, 113.6, 161.7 et 199.6 µg g -1 (P < 0.05), mais pas dans le gras péri rénal (P > 0.10). La digestibilité totale du β-carotène varie (P < 0.05) avec sa concentration dans le régime: 66.25, 84.39 et 88.14%, pour les régimes avec 5.5, 44 et 352 mg de β-carotène. Les résultats suggèrent une grande capacité des tissus pour stocker le β-carotène mais une capacité limitée pour le transformer dans la vitamine A.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.