Thermal and optical properties of two different nanofluids containing SiO 2 and TiO 2 semiconductor nanoparticles were studied by thermal lens spectrometry (TLS) and spectrophotometry. In the case of SiO 2 nanofluids the transmission electron microscopy technique was used to obtain the SiO 2 nanoparticle sizes to investigate the size effect of these nanoparticles on the sample thermal diffusivity which is important in some medical applications such as photothermal-modulated drug delivery systems. On the other hand for the case of TiO 2 nanofluids, the photopyroelectric technique, TLS, scanning electron microscopy, and X-ray diffraction were employed to investigate the concentration effect on the thermal properties of these nanofluids. Thermal diffusivities and effusivities as functions of the TiO 2 nanoparticle concentrations were obtained. From the experimental results, an incremental increase in the thermal diffusivities and effusivities was observed when the nanoparticle concentration was increased, indicating that the nanoparticle concentration is an important factor to be considered to obtain nanofluids with more thermal efficiency which are required for some applications, such as degradation of residual water.
In this paper we present the nonlinear optical characterization of Au/Pd nanoparticles in order to obtain the nonlinear refractive indices using the Z-scan technique. The experiments were performed using a 514 nm laser beam Ar + , with 14 Hz of modulation frequency, as excitation source. By using a lens the excitation beam was focused to a small spot and the sample was moved across the focal region along the z-axis by a motorized translation stage. Seven samples with different concentration ratio of Au/Pd nanoparticles were prepared by simultaneous reduction of gold and palladium ions in presence of poly (N-vinyl-2-pirrolidone) (PVP) using ethanol as a reducing agent. In this work, we report the application of the Z-scan technique, to generate optical transmission of laser light as a function of the z position for solutions containing bimetallic nanoparticles of Au (core)/Pd (shell) with average sizes ranging from 3 to 5 nm. The magnitude of the obtained nonlinear refractive index was in the order of 10 −8 cm 2 /W. Our results show that the nonlinear refractive index has a nonlinear behavior when the (Au/Pd) ratio was increased.
Several vegetable edible oils (sunflower, canola, soya, and corn) were used to study the thermal diffusivity of edible oils. Thermal lens spectrometry (TLS) was applied to measure the thermal properties. The results showed that the obtained thermal diffusivities with this technique have good agreement when compared with literature values. In this technique an Ar + laser and intensity stabilized He-Ne laser were used as the heating source and probe beam, respectively. These studies may contribute to a better understanding of the physical properties of edible oils and the quality of these important foodstuffs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.