Some cases of autosomal dominant familial amyotrophic lateral sclerosis (FALS) are associated with mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1), suggesting that oxidative damage may play a role in ALS pathogenesis. To further investigate the biochemical features of FALS and sporadic ALS (SALS), we examined markers of oxidative damage to protein, lipids, and DNA in motor cortex (Brodmann area 4), parietal cortex (Brodmann area 40), and cerebellum from control subjects, FALS patients with and without known SOD mutations, SALS patients, and disease controls (Pick's disease, progressive supranuclear palsy, diffuse Lewy body disease). Protein carbonyl and nuclear DNA 8-hydroxy-2 '-deoxyguanosine (OH 8dG) levels were increased in SALS motor cortex but not in FALS patients. Malondialdehyde levels showed no significant changes. Immunohistochemical studies showed increased neuronal staining for hemeoxygenase-1, malondialdehydemodified protein, and OH8dG in both SALS and FALS spinal cord. These studies therefore provide further evidence that oxidative damage may play a role in the pathogenesis of neuronal degeneration in both SALS and FALS.
A deficiency of the protein dystrophin has recently been shown to be the probable cause of Duchenne's muscular dystrophy. We sought to determine the relation between the clinical phenotype and the status of dystrophin in muscle-biopsy specimens from 103 patients with various neuromuscular disorders. We found very low levels (less than 3 percent of normal levels) or no dystrophin in the severe Duchenne phenotype (35 of 38 patients), low concentrations of dystrophin in the intermediate (outlier) phenotype (4 of 7), and dystrophin of abnormal molecular weight in the mild Becker phenotype (12 of 18). Normal levels of dystrophin of normal molecular weight were found in nearly all the patients (38 of 40) with 20 other neuromuscular disorders we studied. These data show the clinical consequences of both quantitative alterations (in Duchenne's and intermediate dystrophy) in a single protein. The biochemical assay for dystrophin should prove helpful in delineating myopathies that overlap clinically with Duchenne's and Becker's dystrophies, and it shows promise as an accurate diagnostic tool.
The pathogenesis of neuronal degeneration in both sporadic and familial amyotrophic lateral sclerosis (ALS) associated with mutations in superoxide dismutase may involve oxidative stress. A leading candidate as a mediator of oxidative stress is peroxynitrite, which is formed by the reaction of superoxide with nitric oxide. 3-Nitrotyrosine is a relatively specific marker for oxidative damage mediated by peroxynitrite. In the present study, biochemical measurements showed increased concentrations of 3-nitrotyrosine and 3-nitro-4-hydroxyphenylacetic acid in the lumbar and thoracic spinal cord of ALS patients. Increased 3-nitrotyrosine immunoreactivity was observed in motor neurons of both sporadic and familial ALS patients. Neurologic control patients with cerebral ischemia also showed increased 3-nitrotyrosine immunoreactivity. These findings suggest that peroxynitrite-mediated oxidative damage may play a role in the pathogenesis of both sporadic and familial ALS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.