Hydrogenase, purified to an average specific activity of 328 jsmol of H2 evolved/(min X mg of protein) from Clostridium pasteurianum W5, was found to have 4-5 Fe and 4-5 labile sulfur atoms per molecule of 60,000 molecular weight, in contrast with earlier reports of 12 Fe per molecule. Displacement of the iron-sulfur cluster from hydrogenase by thiophenol in 80% hexamethyl phosphoramide:20% H20 yielded the Fe4S4 (thiophenyl)4 dianion according to absorption spectroscopy. Electron paramagnetic resonance spectroscopy at 12 K showed that the iron-sulfur cluster in the enzyme could be reduced by the H2 to a state (g-values of 2.098, 1.970, and 1.898) similar to that in reduced ferredoxin and could be oxidized by dichlorophenolindophenol or H+ to a state (gvalues at 2.099, 2.041, and 2.001) similar to that in high potential iron-sulfur proteins. These oxidations and reductions appeared to occur within the turnover time of the enzyme. Deuterium failed to narrow the electron paramagnetic resonance signal in either state, but the competitive inhibitor carbon monoxide reversibly formed a compound with either state and substantially altered the electron paramagnetic resonance. 13CO produced a broadening of these signals, suggesting the formation of a direct CO complex with the iron-sulfur cluster. These data are consistent with a model of the active site of the enzyme in which a four-iron four-sulfur cluster is a component that can accept one or two electrons from and donate either one or two electrons to substrates, and in which the iron-sulfur cluster serves as the site of binding of gaseous ligands. Hydrogenases have been purified extensively from C. pasteurianum (1-3), Desulfovibrio vulgaris (4, 5), and Chromatium (6). Although it has been known for some time that the enzyme is an iron-sulfur enzyme (ref. 7, and references therein), no evidence has appeared so far about the nature of the iron-sulfur center nor about its mode of action in the enzyme. In this communication we report evidence for the nature of the iron-sulfur cluster, its oxidation states during turnover, and its interaction with the competitive inhibitor carbon monoxide. A hypothesis emerges which suggests further useful avenues of study. MATERIALS -AND METHODSMethyl viologen from Koch-Light Laboratories (Colnbrook, England) was recrystallized twice from ethanol-acetone and analyzed (found 56.04% C, 5.50%
Two distinct hydrogenases, hereafter referred to as "uptake" and "reversible" hydrogenase, were extracted from Anabaena sp. strain 7120 and partially purified. The properties of the two enzymes were compared in cell-free extracts. Uptake hydrogenase was largely particulate, and although membrane bound, it could catalyze an oxyhydrogen reaction. Particulate and solubilized uptake hydrogenase could catalyze H2 uptake with a variety of artificial electron acceptors which had midpoint potentials above 0 mV. Reversible hydrogenase was soluble, could donate electrons rapidly to electron acceptors of both positive and negative midpoint potential, and could evolve H2 rapidly when provided with reduced methyl viologen. Uptake hydrogenase was irreversibly inactivated by O2, whereas reversible hydrogenase was reversibly inactivated and could be reactivated by exposure to dithionite or H2. Reversible hydrogenase was stable to heating at 70 degrees C, but uptake hydrogenase was inactivated with a half-life of 12 min at this temperature. Uptake hydrogenase was eluted from Sephadex G-200 in a single peak of molecular weight 56,000, whereas reversible hydrogenase was eluted in two peaks with molecular weights of 165,000 and 113,000. CO was competitive with H2 for each enzyme; the Ki's for CO were 0.0095 atm for reversible hydrogenase and 0.039 atm for uptake hydrogenase. The pH optima for H2 evolution and H2 uptake by reversible hydrogenase were 6 and 9, respectively. Uptake hydrogenase existed in two forms with pH optima of 6 and 8.5. Both enzymes had very low Km's for H2, and neither was inhibited by C2H2.
Fructose, galactose, L-arabinose, gluconate, and several organic acids support rapid growth and N2 fixation of Azospirillum brasiliense ATCC 29145 (strain Sp7) as a sole source of carbon and energy. Growth of Azospirillum lipoferum ATCC 29707 (strain Sp59b) is also supported by glucose, mannose, mannitol, and aketoglutarate. Oxidation of fructose and gluconate by A. brasiliense Sp7 and of glucose, gluconate, and fructose by A. lipoferum Sp59b was achieved through inducible enzymatic mechanisms. Both strains exhibited all of the enzymes of the Embden-Meyerhof-Parnas pathway, and strain Sp59b also possesses all the enzymes of the Entner-Doudoroff pathway. Fluoride inhibited growth on fructose (strains Sp7 and Sp59b) or on glucose (strain Sp59b) but not on malate. There was no activity via the oxidative hexose monophosphate pathway in either strain. There was greater activity with 1-phosphofructokinase than with 6-phosphofructokinase in both strains. Strain Sp59b formed fructose-6-phosphate via hexokinase, an enzyme that is lacking in strain Sp7. A. brasiliense and A. lipoferum exhibited the enzymes both of the tricarboxylic acid cycle and of the glyoxylate shunt; iodoacetate, fluoropyruvate, and malonate were inhibitory. A. brasiliense Sp7 could not transport
Uptake hydrogenase (EC 1.12) from Azotobacter vinelandii has been purified 250-fold from membrane preparations. Purification involved selective solubilization of the enzyme from the membranes, followed by successive chromatography on DEAE-cellulose, Sephadex G-100, and hydroxylapatite. Freshly isolated hydrogenase showed a specific activity of 110 ,imol of H2 uptake (min * mg of protein)-. The purified hydrogenase still contained two minor contaminants that ran near the front on sodium dodecyl sulfatepolyacrylamide gels. The enzyme appears to be a monomer of molecular weight near 60,000 3,000. The pI of the protein is 5.8 0.2. With methylene blue or ferricyanide as the electron acceptor (dyes such as methyl or benzyl viologen with negative midpoint potentials did not function), the enzyme had pH optima at pH 9.0 or 6.0, respectively, It has a temperature optimum at 65 to 70°C, and the measured half-life for irreversible inactivation at 22°C by 20% 02 was 20 min. The enzyme oxidizes H2 in the presence of an electron acceptor and also catalyzes the evolution of H2 from reduced methyl viologen; at the optimal pH of 3.5, 3.4 ,umol of H2 was evolved (miin * mg of protein)-'. The uptake hydrogenase catalyzes a slow deuterium-water exchange in the absence of an electron acceptor, and the highest rate was observed at pH 6.0. The Km values varied widely for different electron acceptors, whereas the Km for H2 remained virtually constant near 1 to 2 ,uM, independent of the electron acceptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.