Abstract. Estimates of the global magnitude of atmospheric methane sources are cttrrently mainly based on direct flux measurements in source regions. Their extrapolation to the entire globe often involves large uncertainties. In this paper, we present an inverse modeling approach which can be used to deduce information on methane sources and sinks from the temporal and spatial variations of atmospheric methane mixing ratios. Our approach is based on a three-dimensional atmospheric transport model which, combined with a tropospheric background chemistry modtde, is also employed to calculate the global distribution of OH radicals which provide the main sink for atmospheric methane. The global mean concentration of OH radicals is va•dated with methyl chloroform (CHsCCls) observations. The inverse modeling method optimizes the agreement between model-calculated and observed methane mixing ratios by adjusting the magnitudes of the various methane sources and sinks. The adjustment is constrained by specified a priori estimates and uncertainties of the source and sink magnitudes. We also include data on the •sC/•2C isotope ratio of atmospheric methane and its sources in the model. methane observations. Differences between these two scenarios may probably be attributed to underestimated a priori uncertainties of wetland emissions. Applying the inverse model, the average uncertainty of methane source magnitudes could be reduced by at least one third. We also examined the decrease in the atmospheric methane growth rate during the early 1990s but could not uniquely associate it with changes in particular sources.
Abstract.The coupled climate-chemistry model ECHAM4.L39(DLR)/CHEM is presented which enables a simultaneous treatment of meteorology and atmospheric chemistry and their feedbacks. This is the first model which interactively combines a general circulation model with a chemical model, employing most of the important reactions and species necessary to describe the stratospheric and upper tropospheric ozone chemistry, and which is computationally fast enough to allow long-term integrations with currently available computer resources. This is possible as the model time-step used for the chemistry can be chosen as large as the integration time-step for the dynamics. Vertically the atmosphere is discretized by 39 levels from the surface up to the top layer which is centered at 10 hPa, with a relatively high vertical resolution of approximately 700 m near the extra-tropical tropopause. We present the results of a control simulation representing recent conditions (1990) and compare it to available observations. The focus is on investigations of stratospheric dynamics and chemistry relevant to describe the stratospheric ozone layer.ECHAM4.L39(DLR)/CHEM reproduces main features of stratospheric dynamics in the arctic vortex region, including stratospheric warming events. This constitutes a major improvement compared to earlier model versions. However, apparent shortcomings in antarctic circulation and temperatures persist. The seasonal and interannual variability of the ozone layer is simulated in accordance with observations. Activation and deactivation of chlorine in the polar stratospheric vortices and their inter-hemispheric differences are reproduced. Considering methane oxidation as part of the dynamic-chemistry feedback results in an improved representation of the spatial distribution of stratospheric water vapour concentrations.The current model constitutes a powerful tool to investigate, for instance, the combined direct and indirect effects of anthropogenic trace gas emissions.
Key words. Atmospheric composition and structure (mid-Correspondence to: M. Dameris (martin.dameris@dlr.de) dle atmosphere -composition and chemistry) -Meteorology and atmospheric dynamics (general circulation; middle atmosphere dynamics)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.