The problem of electromechanical film characterization, and, in particular, the determination of the piezoelectric activities of thin films deposited on substrates, is of fundamental importance in the development of structures for microelectromechanical system (MEMS) applications. The design and the architecture of the piezoelectric MEMS are directly related to the mechanical and the piezoelectric performances of the material. In this article, we present and compare some results obtained on different experimental setup for the determination of the d33 coefficient. We have optimized the experimental conditions using a laser Doppler vibrometer. The main problem is the contribution of the bending effect of the substrates on the d33 coefficient, which is an intrinsic property of the film. We show that the d33 values are directly related to parameters such as the top electrode diameter and the substrate holder. The results are in agreement with those obtained with the conventional double beam interferometer used to account for substrate bending.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.