Electrically conductive and thereby electrical discharge machinable ceramics may gain further relevance for tooling applications and in chemical industry. They combine high chemical and thermal durability with high hardness and strength. While these properties represent a significant advantage for application, they are a major challenge for conventional machining. Due to the thermophysical removal principle, wire electrical discharge machining (WEDM) is a suitable manufacturing process for hardness-independent machining and may broaden the use of ceramics especially in case of customized complex parts. Up to now, there are only a few investigations on WEDM of electrically conductive ceramics, especially with regard to the surface integrity and the influence of the EDM process on the mechanical properties. A previous study investigated the influence of different WEDM technologies on the surface integrity and the resulting load-bearing capacity of a zirconia-tungsten carbide (TZP-WC) ceramic. Based on this investigation, the heat flow in this ceramic composite was calculated with the use of a heat simulation model and compared with the analyzed rim zone, in order to predict a priori reliable process parameters. Furthermore, the wire electrical machinability and the bending strength of alumina-zirconia-tungsten carbide (ATZ-WC) composite ceramics with different fractions of the respective phases were investigated to identify the correlations and verify the simulation model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.