Adoptive immunotherapy with regulatory T cells (Tregs) is a promising treatment for allograft rejection and graft-versus-host disease (GVHD). Emerging data indicate that, compared with polyclonal Tregs, disease-relevant antigen-specific Tregs may have numerous advantages, such as a need for fewer cells and reduced risk of nonspecific immune suppression. Current methods to generate alloantigen-specific Tregs rely on expansion with allogeneic antigen-presenting cells, which requires access to donor and recipient cells and multiple MHC mismatches. The successful use of chimeric antigen receptors (CARs) for the generation of antigen-specific effector T cells suggests that a similar approach could be used to generate alloantigen-specific Tregs. Here, we have described the creation of an HLA-A2-specific CAR (A2-CAR) and its application in the generation of alloantigen-specific human Tregs. In vitro, A2-CAR-expressing Tregs maintained their expected phenotype and suppressive function before, during, and after A2-CAR-mediated stimulation. In mouse models, human A2-CAR-expressing Tregs were superior to Tregs expressing an irrelevant CAR at preventing xenogeneic GVHD caused by HLA-A2+ T cells. Together, our results demonstrate that use of CAR technology to generate potent, functional, and stable alloantigen-specific human Tregs markedly enhances their therapeutic potential in transplantation and sets the stage for using this approach for making antigen-specific Tregs for therapy of multiple diseases.
Regulatory T cells (Tregs) are suppressive T cells that have an essential role in maintaining the balance between immune activation and tolerance. Their development, either in the thymus, periphery, or experimentally in vitro, and stability and function all depend on the right mix of environmental stimuli. This review focuses on the effects of cytokines, metabolites, and the microbiome on both human and mouse Treg biology. The role of cytokines secreted by innate and adaptive immune cells in directing Treg development and shaping their function is well established. New and emerging data suggest that metabolites, such as retinoic acid, and microbial products, such as short-chain fatty acids, also have a critical role in guiding the functional specialization of Tregs. Overall, the complex interaction between distinct environmental stimuli results in unique, and in some cases tissue-specific, tolerogenic environments. Understanding the conditions that favor Treg induction, accumulation, and function is critical to defining the pathophysiology of many immune-mediated diseases and to developing new therapeutic interventions.
Regulatory T cell (Treg)-based therapy is a promising approach to treat many immune-mediated disorders such as autoimmune diseases, organ transplant rejection, and graft-versus-host disease (GVHD). Challenges to successful clinical implementation of adoptive Treg therapy include difficulties isolating homogeneous cell populations and developing expansion protocols that result in adequate numbers of cells that remain stable, even under inflammatory conditions. We investigated the potential of discarded human thymuses, routinely removed during pediatric cardiac surgery, to be used as a novel source of therapeutic Tregs. Here, we show that large numbers of FOXP3 þ Tregs can be isolated and expanded from a single thymus. Expanded thymic Tregs had stable FOXP3 expression and long telomeres, and suppressed proliferation and cytokine production of activated allogeneic T cells in vitro. Moreover, expanded thymic Tregs delayed development of xenogeneic GVHD in vivo more effectively than expanded Tregs isolated based on CD25 expression from peripheral blood. Importantly, in contrast to expanded blood Tregs, expanded thymic Tregs remained stable under inflammatory conditions. Our results demonstrate that discarded pediatric thymuses are an excellent source of therapeutic Tregs, having the potential to overcome limitations currently hindering the use of Tregs derived from peripheral or cord blood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.