We analyze deep near-IR adaptive optics imaging (taken with NAOS/CONICA on the VLT) 1 as well as new proper motion data of the nuclear star cluster of the Milky Way. The surface density distribution of faint (H≤ 20, K s ≤ 19) stars peaks within 0.2 ′′ of the black hole candidate SgrA ⋆ . The radial density distribution of this stellar 'cusp' follows a power law of exponent α ∼ 1.3 − 1.4. The K-band luminosity function of the overall nuclear stellar cluster (within 9 ′′ of SgrA ⋆ ) resembles that of the large scale, Galactic bulge, but shows an excess of stars at K s ≤ 14. It fits population synthesis models of an old, metal rich stellar population with a contribution from young, early and late-type stars at the bright end. In contrast, the cusp within ≤ 1.5 ′′ of SgrA ⋆ appears to have a featureless luminosity function, suggesting that old, low mass horizontal branch/red clump stars are lacking. Likewise there appear to be fewer late type giants. The innermost cusp also contains a group of moderately bright, early type stars that are tightly bound to the black hole. We interpret these results as evidence that the stellar properties change significantly from the outer cluster (≥ a few arcsecs) to the dense innermost region around the black hole.We find that most of the massive early type stars at distances 1-10" from SgrA ⋆ are located in two rotating and geometrically thin disks. These disks are inclined at large angles and counter-rotate with respect to each other. Their stellar content is essentially the same, indicating that they formed at the same time. We conclude that of the possible formation scenarios for these massive stars the most probable one is that 5-8 million years ago two clouds fell into the center, collided, were shock compressed and then formed two rotating (accretion) disks orbiting the central black hole. For the OB-stars in the central arcsecond, on the other hand, a stellar merger model is the most appealing explanation. These stars may thus be 'super-blue-stragglers', formed and 'rejuvenated' through mergers of lower mass stars in the very dense (≥ 10 8 M ⊙ pc −3 ) environment of the cusp. The 'collider model' also accounts for the lack of giants within the central few arcseconds.The star closest to SgrA ⋆ in 2002, S2, exhibits a 3.8 µm excess. We propose that the mid-IR emission either comes from the accretion flow around the black hole itself, or from dust in the accretion flow that is heated by the ultra-violet emission of S2.1 Based on observations obtained at the European Southern Observatory, Chile
Many galaxies are thought to have supermassive black holes at their centres-more than a million times the mass of the Sun. Measurements of stellar velocities and the discovery of variable X-ray emission have provided strong evidence in favour of such a black hole at the centre of the Milky Way, but have hitherto been unable to rule out conclusively the presence of alternative concentrations of mass. Here we report ten years of high-resolution astrometric imaging that allows us to trace two-thirds of the orbit of the star currently closest to the compact radio source (and massive black-hole candidate) Sagittarius A*. The observations, which include both pericentre and apocentre passages, show that the star is on a bound, highly elliptical keplerian orbit around Sgr A*, with an orbital period of 15.2 years and a pericentre distance of only 17 light hours. The orbit with the best fit to the observations requires a central point mass of (3.7 +/- 1.5) x 10(6) solar masses (M(*)). The data no longer allow for a central mass composed of a dense cluster of dark stellar objects or a ball of massive, degenerate fermions.
-Using a sample of high-redshift lensed quasars from the CASTLES project with observed-frame ultraviolet or optical and near-infrared spectra, we have searched for possible biases between supermassive black hole (BH) mass estimates based on the C iv, Hα and Hβ broad emission lines. Our sample is based upon that of Greene, Peng & Ludwig, expanded with new near-IR spectroscopic observations, consistently analyzed high S/N optical spectra, and consistent continuum luminosity estimates at 5100Å. We find that BH mass estimates based on the FWHM of C iv show a systematic offset with respect to those obtained from the line dispersion, σ l , of the same emission line, but not with those obtained from the FWHM of Hα and Hβ. The magnitude of the offset depends on the treatment of the He ii and Fe ii emission blended with C iv, but there is little scatter for any fixed measurement prescription. While we otherwise find no systematic offsets between C iv and Balmer line mass estimates, we do find that the residuals between them are strongly correlated with the ratio of the UV and optical continuum luminosities. This means that much of the dispersion in previous comparisons of C iv and Hβ BH mass estimates are due to the continuum luminosities rather than any properties of the lines. Removing this dependency reduces the scatter between the UV-and optical-based BH mass estimates by a factor of approximately 2, from roughly 0.35 to 0.18 dex. The dispersion is smallest when comparing the C iv σ l mass estimate, after removing the offset from the FWHM estimates, and either Balmer line mass estimate. The correlation with the continuum slope is likely due to a combination of reddening, host contamination and object-dependent SED shapes. When we add additional heterogeneous measurements from the literature, the results are unchanged. Moreover, in a trial observation of a remaining outlier, the origin of the deviation is clearly due to unrecognized absorption in a low S/N spectrum. This not only highlights the importance of the quality of the observations, but also raises the question if whether cases like this one are common in the literature, further biasing comparisons between C iv and other broad emission lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.