Combined neutral beam injection and fast wave heating at the fourth and fifth cyclotron harmonics accelerate fast ions in the DIII-D tokamak. Measurements with a nine-channel fast-ion D-alpha (FIDA) diagnostic indicate the formation of a fast-ion tail above the injection energy. Tail formation correlates with enhancement of the d-d neutron rate above the value that is expected in the absence of fast-wave acceleration. FIDA spatial profiles and fast-ion pressure profiles inferred from the equilibrium both indicate that the acceleration is near the magnetic axis for a centrally located resonance layer. The enhancement is largest 8-10 cm beyond the radius where the wave frequency equals the cyclotron harmonic, probably due to a combination of Doppler-shift and orbital effects. The fast-ion distribution function calculated by the CQL3D FokkerPlanck code is fairly consistent with the data.
Abstract. In this paper the manipulation of power deposition on divertor targets at DIII-D by application of resonant magnetic perturbations (RMPs) for suppression of large Type-I edge localized modes (ELMs) is analysed. We discuss the modification of the ELM characteristics by the RMP applied. It is shown, that the width of the deposition pattern in ELMy H-mode depends linearly on the ELM deposited energy, whereas in the RMP phase of the discharge those patterns are controlled by the externally induced magnetic perturbation. It was also found that the manipulation of heat transport due to application of small, edge resonant magnetic perturbations (RMP) depends on the plasma pedestal electron collisionality . We compare in this analysis RMP and no RMP phases with and without complete ELM suppression. At high , the heat flux during the ELM suppressed phase is of the same order as the inter-ELM and the no-RMP phase. However, below this collisionality value, a slight increase of the total power flux to the divertor is observed during the RMP phase. This is most likely caused by a more negative potential at the divertor surface due to hot electrons reaching the divertor surface from the pedestal area along perturbed, open field lines and/or the density pump out effect.
A new sustained high-performance regime, combining discrete edge and core transport barriers, has been discovered in the DIII-D tokamak. Edge localized modes (ELMs) are replaced by a steady oscillation that increases edge particle transport, thereby allowing particle control with no ELM-induced pulsed divertor heat load. The core barrier resembles those usually seen with a low (L) mode edge, without the degradation often associated with ELMs. The barriers are separated by a narrow region of high transport associated with a zero crossing in the E x B shearing rate.
Fast waves at frequencies far above the ion cyclotron frequency and approaching the lower hybrid frequency (also called 'helicons' or ‘whistlers’) have application to off-axis current drive in tokamaks with high electron beta. The high frequency causes the whistler-like behaviour of the wave power nearly following field lines, but with a small radial component, so the waves spiral slowly towards the plasma centre. The high frequency also contributes to strong damping. Modelling predicts robust off-axis current drive with good efficiency compared to alternatives in high performance discharges in DIII-D and Fusion Nuclear Science Facility (FNSF) when the electron beta is above about 1.8%. Detailed analysis of ray behaviour shows that ray trajectories and damping are deterministic (that is, not strongly affected by plasma profiles or initial ray conditions), unlike the chaotic ray behaviour in lower frequency fast wave experiments. Current drive was found to not be sensitive to the launched value of the parallel index of refraction n‖, so wave accessibility issues can be reduced. Use of a travelling wave antenna provides a very narrow n‖spectrum, which also helps avoid accessibility problems.
Abstract. Combined neutral beam injection and fast wave heating at the fourth cyclotron harmonic produce an energetic deuterium beam ion tail in the DIII-D tokamak. When the concentration of thermal hydrogen exceeds ∼5%, the beam ion absorption is suppressed in favour of second harmonic hydrogen absorption. As theoretically expected, the beam absorption increases with beam ion gyroradius; also, central absorption at the fifth harmonic is weaker than central absorption at the fourth harmonic. For central heating at the fourth harmonic, an energetic, perpendicular, beam population forms inside the q = 1 surface. The beam ion tail transiently stabilizes the sawtooth instability but destabilizes toroidicity induced Alfvén eigenmodes (TAEs). Saturation of the central heating correlates with the onset of the TAEs. Continued expansion of the q = 1 radius eventually precipitates a sawtooth crash; complete magnetic reconnection is observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.