Observing the Global Positioning System with a satellite in low earth orbit in an occulting geometry provides a powerful means of imaging the ionosphere. Tomographic imaging of the ionosphere from space and ground is examined using singular value decomposition analysis. The resolution and covariance matrices are examined, and simulations are performed that indicate that space data are significantly more effective than ground data in resolving both horizontal and vertical structures. It is shown that narrow vertical structures, such as the E layer, can be probed with occultation data.
A reduced dynamic filtering strategy that exploits the unique geometric strength of the Global Positioning System(GPS) to minimize the effects of force model errors has yielded orbit solutions for TOPEX/POSEIDON which appear accurate to better than 3 cm (1 σ) in the radial component. Reduction of force model error also reduces the geographic correlation of the orbit error. With a traditional dynamic approach, GPS yields radial orbit accuracies of 4–5 cm, comparable to the accuracy delivered by satellite laser ranging and the Doppler orbitography and radio positioning integrated by satellite (DORIS) tracking system. A portion of the dynamic orbit error is in the Joint Gravity Model‐2 (JGM‐2); GPS data from TOPEX/POSEIDON can readily reveal that error and have been used to improve the gravity model.
Global Positioning System (GPS) data were used to estimate Earth rotation variations over an 11‐day period during the Epoch ‘92 campaign in the summer of 1992. Earth orientation was measured simultaneously by several very long baseline interferometry (VLBI) networks. GPS and VLBI estimates of UT1 with 3‐hour time resolution were then compared and analyzed. The high frequency behavior of both data sets is similar, although drifts between the two series of ∼0.1 ms over 2‐5 days are evident. The geodetic results were also compared with models for UT1 fluctuations at tidal periods and with estimates of atmospheric angular momentum made at 6‐hour intervals. Most of the geodetic signal in the diurnal and semidiurnal frequency bands can be attributed to tidal processes, whereas UT1 variations over a few days are mostly atmospheric in origin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.