The dynamics of the respiratory and cardiovascular systems were studied by continuously slowing respiration from 0.46 to 0.05 Hz. The time-frequency distribution and global spectral analysis were used to assess the R-R interval (R-R) and the systolic and diastolic blood pressure fluctuations in 16 healthy subjects. During rest, the nonrespiratory-to-respiratory frequency ratios were not affected by occasional slow breathing, whereas the low- (0.01-0.15 Hz) to high- (0.15-0.3 Hz) frequency indexes for blood pressure were increased (P < 0.05). The respiratory fluctuations in R-R and the systolic and diastolic pressures were paced over the 0.46- to 0.05-Hz range. As respiration slowed to 0.07-0.09 Hz, the frequency content of the respiration and cardiovascular variables increased sharply and nonlinearly to a maximum that exceeded values at higher frequencies (P < 0.001). The nonrespiratory frequency content remained stable in the 0.01- to 0.05-Hz range and did not significantly differ from that at rest. In contrast, the nonstable 0.05- to 0.1-Hz component was suppressed. A slow 0.012- to 0.017-Hz rhythm modulated respiration and hemodynamic fluctuations at both respiratory and nonrespiratory frequencies. The study indicated that respiration input should be considered in the interpretation of global spectra. Furthermore the time-frequency distributions demonstrated that a close nonlinear coupling exists between the respiratory and cardiovascular systems.
A B S T R A C T To determine the characteristics of and mechanisms causing the bradycardia during sleep apnea (SA), both patients with SA and normals were studied. Evaluation of six consecutive SA patients demonstrated that bradycardia occurred during 95% of all apneas (central, obstructive, and mixed) and became marked with increased apnea length (P < 0.01) and increased oxyhemoglobin desaturation (P < 0.01). Heart rate slowed 9.5 beats per minute (bpm) during apneas of 10-19 s in duration, 11.4 bpm during 20-39-s apneas, and 16.6 bpm during 40-59-s apneas. Sleep stage had no effect unexplained by apnea length or degree of desaturation.Oxygen administration to four SA patients completely prevented the bradycardia although apneas lengthened (P < 0.05) in three. Sleeping normal subjects did not develop bradycardia during hypoxic hyperpnea but, instead, HR increased with hypoxia in all sleep stages, although the increase in HR was not as great as that which occurred while awake.Breath holding in awake normals did not result in bradycardia during hyperoxia (SaO2 = 99%), but was consistently (P < 0.01) associated with heart rate slowing during room air breath-holds (-6 bpm) at SaO2 = 93%, with more striking slowing (-20 bpm) during hypoxic breath-holds (P < 0.01) at SaO2 = 78%. Breath holding during hyperoxic hypercapnia had no significant effect on rate. Breath holding in awake SA subjects demonstrated similar findings. We conclude that the bradycardia of SA is a consistent feature of apnea and results from the combined effect of cessation of breathing plus hypoxemia.
The purposes of this investigation were to describe the changes in 1) dynamic compliance of the lungs, 2) airflow resistance, and 3) breathing pattern that occur during sleep in normal adult humans. Six subjects wore a tightly fitting face mask. Flow and volume were obtained from a pneumotachograph attached to the face mask. Transpulmonary pressure was calculated as the difference between esophageal pressure obtained with a balloon and mask pressure. At least 20 consecutive breaths were analyzed for dynamic compliance, airflow resistance, and breathing pattern during wakefulness, non-rapid-eye-movement stage 2 and rapid-eye-movement (REM) sleep. Dynamic compliance did not change significantly. Airflow resistance increased during sleep; resistance was 3.93 +/- 0.56 cmH2O X 1–1 X s during wakefulness, 7.96 +/- 0.95 in stage 2 sleep, and 8.66 +/- 1.43 in REM sleep (P less than 0.02). By placing a catheter in the retroepiglottic space and thus dividing the airway into upper and lower zones, we found the increase in resistance occurred almost entirely above the larynx. Decreases in tidal volume, minute ventilation, and mean inspiratory flow observed during sleep were not statistically significant.
To assess the effect of sleep on functional residual capacity (FRC) in normal subjects and asthmatic patients, 10 adult subjects (5 asthmatic patients with nocturnal worsening, 5 normal controls) were monitored overnight in a horizontal volume-displacement body plethysmograph. With the use of a single inspiratory occlusion technique, we determined that when supine and awake, asthmatic patients were hyperinflated relative to normal controls (FRC = 3.46 +/- 0.18 and 2.95 +/- 0.13 liters, respectively; P less than 0.05). During sleep FRC decreased in both groups, but the decrease was significantly greater in asthmatic patients such that during rapid-eye-movement (REM) sleep FRC was equivalent between the asthmatic and normal groups (FRC = 2.46 +/- 0.23 and 2.45 +/- 0.09 liters, respectively). Specific pulmonary conductance decreased progressively and significantly in the asthmatic patients during the night, falling from 0.047 +/- 0.007 to 0.018 +/- 0.002 cmH2O-1.s-1 (P less than 0.01). There was a significant linear relationship through the night between FRC and pulmonary conductance in only two of the five asthmatic patients (r = 0.55 and 0.65, respectively). We conclude that 1) FRC falls during sleep in both normal subjects and asthmatic patients, 2) the hyperinflation observed in awake asthmatic patients is diminished during non-REM sleep and eliminated during REM sleep, and 3) sleep-associated reductions in FRC may contribute to but do not account for all the nocturnal increase in airflow resistance observed in asthmatic patients with nocturnal worsening.
The purpose of this study was to determine whether hypoventilation contributes to the sleep hypoxemia observed in chronic obstructive pulmonary disease (COPD) patients and to examine breathing pattern and respiratory muscle electromyographic (EMG) activity during these episodes. Seven COPD patients who experienced at least a 10% decrease in arterial O2 saturation (SaO2) during rapid-eye-movement sleep (REM) sleep, six COPD patients with a minimal fall in SaO2, and five healthy subjects were studied. An inductance vest was used to quantitate ventilation. Skin electrodes were used to estimate diaphragmatic and intercostal electromyographic activity. Minute ventilation and EMG activity decreased in all three groups during sleep. Ventilation was irregular during REM sleep in the patients. During REM sleep, desaturating patients had longer episodes of hypopneic breathing [30 +/- 8 s (SE)] than nondesaturating patients (13 +/- 1 s, P less than 0.01). Desaturating patients spent a greater proportion of REM time hypopneic (53 +/- 5 vs. 28 +/- 5%, P less than 0.01) and had a greater decrease in functional residual capacity during hypopnea (P less than 0.05). SaO2 followed the hypopneic and hyperpneic breathing in REM sleep so that desaturating patients had more time for desaturation to occur. Thus hypoventilation appears to be a primary factor in sleep O2 desaturation in these patients. Because of the fall in lung volume, maldistribution of ventilation may also contribute.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.