SummaryThe impact of neonicotinoid insecticides on the health of bee pollinators is a topic of intensive research and considerable current debate [1]. As insecticides, certain neonicotinoids, i.e., N-nitroguanidine compounds such as imidacloprid and thiamethoxam, are as intrinsically toxic to bees as to the insect pests they target. However, this is not the case for all neonicotinoids, with honeybees orders of magnitude less sensitive to N-cyanoamidine compounds such as thiacloprid [2]. Although previous work has suggested that this is due to rapid metabolism of these compounds [2, 3, 4, 5], the specific gene(s) or enzyme(s) involved remain unknown. Here, we show that the sensitivity of the two most economically important bee species to neonicotinoids is determined by cytochrome P450s of the CYP9Q subfamily. Radioligand binding and inhibitor assays showed that variation in honeybee sensitivity to N-nitroguanidine and N-cyanoamidine neonicotinoids does not reside in differences in their affinity for the receptor but rather in divergent metabolism by P450s. Functional expression of the entire CYP3 clade of P450s from honeybees identified a single P450, CYP9Q3, that metabolizes thiacloprid with high efficiency but has little activity against imidacloprid. We demonstrate that bumble bees also exhibit profound differences in their sensitivity to different neonicotinoids, and we identify CYP9Q4 as a functional ortholog of honeybee CYP9Q3 and a key metabolic determinant of neonicotinoid sensitivity in this species. Our results demonstrate that bee pollinators are equipped with biochemical defense systems that define their sensitivity to insecticides and this knowledge can be leveraged to safeguard bee health.
The impact of pesticides on the health of bee pollinators is determined in part by the capacity of bee detoxification systems to convert these compounds to less toxic forms. For example, recent work has shown that cytochrome P450s of the CYP9Q subfamily are critically important in defining the sensitivity of honey bees and bumblebees to pesticides, including neonicotinoid insecticides. However, it is currently unclear if solitary bees have functional equivalents of these enzymes with potentially serious implications in relation to their capacity to metabolise certain insecticides. To address this question, we sequenced the genome of the red mason bee, Osmia bicornis , the most abundant and economically important solitary bee species in Central Europe. We show that O . bicornis lacks the CYP9Q subfamily of P450s but, despite this, exhibits low acute toxicity to the N -cyanoamidine neonicotinoid thiacloprid. Functional studies revealed that variation in the sensitivity of O . bicornis to N -cyanoamidine and N -nitroguanidine neonicotinoids does not reside in differences in their affinity for the nicotinic acetylcholine receptor or speed of cuticular penetration. Rather, a P450 within the CYP9BU subfamily, with recent shared ancestry to the Apidae CYP9Q subfamily, metabolises thiacloprid in vitro and confers tolerance in vivo . Our data reveal conserved detoxification pathways in model solitary and eusocial bees despite key differences in the evolution of specific pesticide-metabolising enzymes in the two species groups. The discovery that P450 enzymes of solitary bees can act as metabolic defence systems against certain pesticides can be leveraged to avoid negative pesticide impacts on these important pollinators.
Plants are likely to be affected by simultaneous salinity and boron (B) toxicity stresses due to exposure to soils with high levels of naturally occurring salinity and B, or due to irrigation with water containing high levels of salts, including B. Inadequate information regarding the response of plants to the combination of excess B and salinity on plant growth and yield is available, and there is no consensus concerning mutual relations between salinity stress and B toxicity. Growth and yield of bell pepper (Capsicum annuum L.) were measured at different B and salinity levels in two greenhouse experiments. The results from these experiments and from published data for wheat, tomato and chickpea were analyzed according to the Abbott method to define the combined effect of B and salinity on plant growth and yield. Application of the Abbott method for the experiments on peppers generally implied an antagonistic relationship for excess B and salinity. In other words, toxic effects on growth and yield were less severe for combined B toxicity and salinity than what would be expected if effects of the individual factors were additive. Similar antagonistic characteristics were found using data from three of the five studies reported in the literature. The mechanism of relationships between B and salinity in plants is not clear and several options are discussed. Prominent among the possible explanations are reduced uptake of B in the presence of Cl and reduced uptake of Cl in the presence of B.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.