In this paper, we propose a new method for FECG detection in abdominal recordings. The method consists of a sequential analysis approach, in which the a priori information about the interference signals is used for the detection of the FECG. Our method is evaluated on a set of 20 abdominal recordings from pregnant women with different gestational ages. Its performance in terms of fetal heart rate (FHR) detection success is compared with that of independent component analysis (ICA). The results show that our sequential estimation method outperforms ICA with a FHR detection rate of 85% versus 60% of ICA. The superior performance of our method is especially evident in recordings with a low signal-to-noise ratio (SNR). This indicates that our method is more robust than ICA for FECG detection.
Monitoring the fetal heart rate (fHR) and fetal electrocardiogram (fECG) during pregnancy is important to support medical decision making. Before labor, the fHR is usually monitored using Doppler ultrasound. This method is inaccurate and therefore of limited clinical value. During labor, the fHR can be monitored more accurately using an invasive electrode; this method also enables monitoring of the fECG. Antenatally, the fECG and fHR can also be monitored using electrodes on the maternal abdomen. The signal-to-noise ratio of these recordings is, however, low, the maternal electrocardiogram (mECG) being the main interference. Existing techniques to remove the mECG from these non-invasive recordings are insufficiently accurate or do not provide all spatial information of the fECG. In this paper a new technique for mECG removal in antenatal abdominal recordings is presented. This technique operates by the linear prediction of each separate wave in the mECG. Its performance in mECG removal and fHR detection is evaluated by comparison with spatial filtering, adaptive filtering, template subtraction and independent component analysis techniques. The new technique outperforms the other techniques in both mECG removal and fHR detection (by more than 3%).
The Tokyo Olympics and Paralympic games in 2020 will be held in hot and humid conditions. Heat acclimation (in a climatic chamber) or heat acclimatization (natural environment) is essential to prepare the (endurance) athletes and reduce the performance loss associated with work in the heat. Based on the 1990–2018 hourly meteorological data of Tokyo and the derived wet bulb globe temperature (WBGT) (Liljegren method), Heat Index and Humidex, it is shown that the circumstances prior to the games are likely not sufficiently hot to fully adapt to the heat. For instance, the WBGT 2 weeks prior to the games at the hottest moment of the day (13:00 h) is 26.4 ± 2.9°C and 28.6 ± 2.8°C during the games. These values include correction for global warming. The daily variation in thermal strain indices during the Tokyo Olympics (WBGT varying by 4°C between the early morning and the early afternoon) implies that the time of day of the event has a considerable impact on heat strain. The Paralympics heat strain is about 1.5°C WBGT lower than the Olympics, but may still impose considerable heat strain since the Paralympic athletes often have a reduced ability to thermoregulate. It is therefore recommended to acclimate about 1 month prior to the Olympics under controlled conditions set to the worst-case Tokyo climate and re-acclimatize in Japan or surroundings just prior to the Olympics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.