Today, most of the electricity produced throughout the world is from steam power plants. However, electricity is being produced by some other power generation sources such as hydropower, gas power, bio-gas power, solar cells, etc. One newly devel-oped method of electricity generation is the Magneto hydro dynamic power plant. This paper deals with steam cycles used in power plants. Thermodynamic analysis of the Rankine cycle has been undertaken to enhance the efficiency and reli-ability of steam power plants. The thermodynamic deviations resulting in non-ideal or irreversible func-tioning of various steam power plant components have been identified. A comparative study between the Carnot cycle and Rankine cycle efficiency has been analyzed resulting in the introduction of regen-eration in the Rankine cycle. Factors affecting effi-ciency of the Rankine cycle have been identified and analyzed for improved working of thermal power plants.
Liquid metal magneto-hydrodynamic-energy-conversion (LMMHDEC) systems have been a matter of great interest and research & development since 1960. The various states of design and development of such systems go through a step-by-step progress with time. This paper highlights the phenomenon of direct thermal energy conversion systems using liquid metal as an electrodynamics fluid and gas/vapour as a thermodynamic fluid. An analysis of the technological drawbacks responsible for low efficiency of these LMMHDEC systems along with possible R & D solutions have been discussed in this technical research paper. The separation of electrodynamics fluid from thermodynamic fluid at various stages of MHD conversion remained an efficiency challenge of the various types of systems. To meet this challenge, a Dual-cycle MHD system has been designed in this paper. Both the fluids viz. thermodynamic and electrodynamics go through a phase change in this cycle. The thermal efficiency is optimized when one fluid goes into a phase change during a cycle and another fluid does not experience any phase change. The information covered in this paper enables an overview of concepts and the background to choose a cycle for a given temperature range.
Most of the electricity being produced throughout the world today is from steam power plants. At the same time, many other competent means of gener-ating electricity have been developed viz. electricity from natural gas, MHD generators, biogas, solar cells, etc. But steam power plants will continue to be competent because of the use of water as the main working fluid which is abundantly available and is also reusable. The condenser remains among one of the key components of a steam power plant. The efficiency of a thermal power plant depends upon the efficiency of the condenser. In this paper, a the-oretical investigation about thermal analysis and design considerations of a steam condenser has been undertaken. A hybrid steam condenser using a higher surface area to diameter ratio of cooling a water tube has been analyzed. The use of a hybrid steam condenser enables higher efficiency of the steam power plant by lowering condenser steam pressure and increasing the vacuum inside the con-denser. The latent/sensible heat of steam is used to preheat the feed water supply to the boiler. A con-ceptual technological design aspect of a super vacu-um hybrid surface steam condenser has been theo-retically analyzed.
A Pelton-wheel impulse turbine is a hydro mechanical energy conversion device which converts gravitational energy of elevated water into mechanical work. This mechanical work is converted into electrical energy by means of running an electrical generator. The kinetic energy of the Water-jet is directed tangentially at the buckets of a Pelton-wheel. The Water-jet strikes on each bucket’s convex profile splitter and get split into two halves. Each half is turned backwards, almost through 180° relative to the bucket on a horizontal plane. Practically this angle may vary between 165° to 170°. Normally all the jet energy is used in propelling the rim of the bucket wheel. Invariably some jet water misses the bucket and passes onto the tail race without doing any useful work. This hydro device is a good source of hydro-electrical energy conversion for a high water head. The present work in this research paper deals with some advanced modifications in the conventional Pelton-wheel so that it can be used for low-head and heavy-discharge applications. Both kinetic and potential energy of the water source is consumed by the runner wheel. Considerable gravitational effect of the water jet is exploited by means of some modifications in a conventional Pelton-wheel. A comparatively heavy generator can be run by this modified Pelton-wheel turbine under low-head and heavy-discharge conditions. The modified features provide enough promising opportunities to use this turbine for Mini and Micro hydro power plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.