BackgroundOcimum L. of family Lamiaceae is a well known genus for its ethnobotanical, medicinal and aromatic properties, which are attributed to innumerable phenylpropanoid and terpenoid compounds produced by the plant. To enrich genomic resources for understanding various pathways, de novo transcriptome sequencing of two important species, O. sanctum and O. basilicum, was carried out by Illumina paired-end sequencing.ResultsThe sequence assembly resulted in 69117 and 130043 transcripts with an average length of 1646 ± 1210.1 bp and 1363 ± 1139.3 bp for O. sanctum and O. basilicum, respectively. Out of the total transcripts, 59648 (86.30%) and 105470 (81.10%) from O. sanctum and O. basilicum, and respectively were annotated by uniprot blastx against Arabidopsis, rice and lamiaceae. KEGG analysis identified 501 and 952 transcripts from O. sanctum and O. basilicum, respectively, related to secondary metabolism with higher percentage of transcripts for biosynthesis of terpenoids in O. sanctum and phenylpropanoids in O. basilicum. Higher digital gene expression in O. basilicum was validated through qPCR and correlated to higher essential oil content and chromosome number (O. sanctum, 2n = 16; and O. basilicum, 2n = 48). Several CYP450 (26) and TF (40) families were identified having probable roles in primary and secondary metabolism. Also SSR and SNP markers were identified in the transcriptomes of both species with many SSRs linked to phenylpropanoid and terpenoid pathway genes.ConclusionThis is the first report of a comparative transcriptome analysis of Ocimum species and can be utilized to characterize genes related to secondary metabolism, their regulation, and breeding special chemotypes with unique essential oil composition in Ocimum.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-588) contains supplementary material, which is available to authorized users.
BackgroundOcimum sanctum L. (O. tenuiflorum) family-Lamiaceae is an important component of Indian tradition of medicine as well as culture around the world, and hence is known as “Holy basil” in India. This plant is mentioned in the ancient texts of Ayurveda as an “elixir of life” (life saving) herb and worshipped for over 3000 years due to its healing properties. Although used in various ailments, validation of molecules for differential activities is yet to be fully analyzed, as about 80 % of the patents on this plant are on extracts or the plant parts, and mainly focussed on essential oil components. With a view to understand the full metabolic potential of this plant whole nuclear and chloroplast genomes were sequenced for the first time combining the sequence data from 4 libraries and three NGS platforms.ResultsThe saturated draft assembly of the genome was about 386 Mb, along with the plastid genome of 142,245 bp, turning out to be the smallest in Lamiaceae. In addition to SSR markers, 136 proteins were identified as homologous to five important plant genomes. Pathway analysis indicated an abundance of phenylpropanoids in O. sanctum. Phylogenetic analysis for chloroplast proteome placed Salvia miltiorrhiza as the nearest neighbor. Comparison of the chemical compounds and genes availability in O. sanctum and S. miltiorrhiza indicated the potential for the discovery of new active molecules.ConclusionThe genome sequence and annotation of O. sanctum provides new insights into the function of genes and the medicinal nature of the metabolites synthesized in this plant. This information is highly beneficial for mining biosynthetic pathways for important metabolites in related species.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1640-z) contains supplementary material, which is available to authorized users.
In traditional, herbal medicine, and aromatherapy, use of essential oils and their aroma compounds have been known since long, for the management of various human diseases. The essential oil is a mixture of highly complex, naturally occurring volatile aroma compounds synthesized by medicinal and aromatic plants as secondary metabolites. Essential oils widely used in pharmaceutical, cosmetic, sanitary, food industry and agriculture for their antibacterial, antiviral, antifungal, antiparasitic, insecticidal, anticancer, neuroprotective, psychophysiological, and anti-aging activities. Moreover, volatile aroma compounds comprise a chemically diverse class of low molecular weight organic compounds with significant vapor pressure. However, aroma compounds produced by plants, mainly attract pollinators, seed dispersers and provide defense against pests or pathogens. However, in humans, about 300 active olfactory receptor genes are involved to detect thousands of different aroma compounds and modulates expression of different metabolic genes regulating human psychophysiological activity, brain function, pharmacological signaling, and therapeutic potential. Keeping in mind this importance, present database, namely, AromaDb (http://bioinfo.cimap.res.in/aromadb/) covers information of plant varieties/chemotypes, essential oils, chemical constituents, GC-MS profile, yield variations due to agro-morphological parameters, trade data, aroma compounds, fragrance type, and bioactivity details. The database includes 1,321 aroma chemical structures, bioactivities of essential oil/aroma compounds, 357 fragrance type, 166 commercially used plants, and their high yielding 148 varieties/chemotypes. Also includes calculated cheminformatics properties related to identification, physico-chemical properties, pharmacokinetics, toxicological, and ecological information. Also comprises interacted human genes affecting various diseases related cell signaling pathways correlating the use of aromatherapy. This database could be a useful resource to the plant’s growers/producers, an aroma/fragrance industrialist, health professionals, and researchers exploring the potential of essential oils and aroma compounds in the development of novel formulations against human diseases.
Phenotypic divergence among the 24 accessions belonging to a collection of six species of Capsicum from different geoclimatic regions available in field gene bank of CIMAP, Lucknow, India, was quantified by multivariate analysis for 12 quantitative and qualitative traits. Based on their values, all 24 accessions were grouped into six clusters such that the genetic stocks within cluster had smaller D 2 values among themselves than those belonging to different clusters. The accessions of Capsicum annuum were distributed in different clusters in morphotyping representing different species, suggesting that taxonomic characteristics are not always related to agronomic traits. No parallelism/ association was found between geographical and phenotypic diversity. Accessions 15 and 23 (clusters V and VI, respectively) had distinct identity. The three characteristics that played the greatest role in differentiation were fruit diameter, number of fruits per plant, and leaf diameter, which can be utilized as conventional/morphological markers for the improvement of chilli yield and obtaining good segregants in chilli breeding programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.