The variation in the kidding size of Black Bengal and Sirohi breed of goats makes them an interesting genetic material to study the underlying genetic mechanism of prolificacy. Accordingly, we studied the comparative ovarian morphometry including disparity in numbers of antral follicles of different sizes between these two breeds. Further, we evaluated the differential expression of the important candidate genes (viz., BMP15, GDF9 and BMPR1B) known to influence the ovulation rates and the prolificacy. The ovaries of Black Bengal (n = 20) goat were lighter (p < 0.01) in weight and smaller (p < 0.01) in diameter than those of Sirohi (n = 19) goats but possessed more numbers (p < 0.05) of corpus luteum (CL), large and small antral follicles. Quantitative real-time PCR (RT-qPCR) analysis revealed differential expression of mRNAs encoding for the BMP15 and GDF9. Small antral follicles of Black Bengal goats expressed 2.78-fold more (p < 0.05) of BMP 15 than those of Sirohi goat. Expression of BMP15 (p < 0.01) and GDF9 (p < 0.05) mRNAs was more abundant in the small than the large antral follicles of Black Bengal goat. The more numbers of antral follicles per unit of ovarian mass and differential expression of BMP15 and GDF9 may serve as an important clue for higher prolificacy.
Rate of ovulation (i.e. fecundity) is largely influenced by both genetic and environmental factors. The ovarian growth factors including members of bone morphogenetic proteins (BMPs) play a central role in determining ovulation quota and litter size. Naturally occurring mutation in sheep and knock-out and knock-down studies in murine indicated the importance of bone morphogenetic protein 15 (BMP15), growth differentiation factor 9 (GDF9) and bone morphogenetic protein receptor 1B (BMPR1B) genes in mammals. These factors have major regulatory roles during the gonadotrophin-independent anddependent stages of follicle development. Understanding of BMPs in reproduction assists in the treatment of infertility/ sterility in animals.
The recent coronavirus disease (COVID-19) outbreak is one of its kind in the history of public health that has created a major global threat. The causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a zoonotic source and hence, reverse zoonosis (disease transmission from humans to animals) increases the risk and rate of SARS-CoV-2 infection. Serological and molecular analyses and experimental infection studies have identified SARS-CoV-2 infection in several animal species in various countries. Different domestic and wild animals, including cats, dogs, tigers, lions, puma, snow leopard, minks, and pet ferrets, are infected naturally with SARS-CoV-2, mostly through suspected human to animal transmission. In addition, in vivo experimental inoculation studies have reported the susceptibility of cats, ferrets, hamsters, Egyptian fruit bats, and non-human primates to the virus. These experimentally infected species are found to be capable of virus transmission to co-housed animals of the same species. However, SARS-CoV-2 showed poor replication in livestock species such as pigs, chickens, and ducks with no detection of viral RNA after the animals were deliberately inoculated with the virus or exposed to the infected animals. As the pets/companion animals are more susceptible to COVID-19, the infection in animals needs an in-depth and careful study to avoid any future transmissions. The one health approach is the best inter-disciplinary method to understand the consequences of viral spread and prevention in novel host populations for the betterment of public health. Further in this review, we will explain in detail the different natural and experimentally induced cases of human to animal SARS-CoV-2 infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.