Grain mold caused by a complex of fungi is an economically important disease of sorghum worldwide. Little is known about the epidemiology of sorghum grain mold, which is essential for its management. Studies were conducted to quantify the effects of wetness duration on grain mold development under controlled conditions at ICRISAT. Six major sorghum grain mold fungi determined from previous field experiments,Curvularia lunata, Cladosporium oxysporum, Bipolaris australiensis, Fusarium moniliforme, F. pallidoroseum, and Phoma sorghina, were used. Panicles of a pot-grown mold-susceptible sorghum line, IS 10513, were spray inoculated with each fungus at five growth stages: flowering (F), milk (M), soft dough (S), hard dough (H), and physiological maturity (P), and were incubated in dew chambers for 0,16, 24, 40, 48, and 72 h. Then, the plants were placed on greenhouse benches at 25 ± 1°C to allow grain mold infection to develop. Eight days after treatments, grains from F, M, and S stages were plated onto potato dextrose agar, while those from H and P stages were incubated in blotter paper humid chambers at 28 ± 1°C. Fungal colonization of grains were scored after 7 days. Results indicated a significant (P < 0.01) correlation between wetness duration and grain mold development at different stages of inoculation. Generally, with increasing wetness duration, there was an increase in grain infection by all six fungi. However, infection frequency varied among fungi and grain development stages, indicating that individual fungi might have different windows for maximum infection during the grain development stages. In many regions of the world where sorghum (Sorghum bicolor (L.) Moench) is produced, grain mold is a serious disease that reduces grain quality and utilization. The term "grain mold" is used to describe the diseased appearance of sorghum grain resulting from infection by one or more parasitic fungal species (21). Grain mold is most commonly caused by Fusarium moniliforme J. Sheld. and Curvularia lunata (Wakk.) Boedjin, although many other fungal species are also associated with the mold complex (9,16). It is a major biotic constraint to sorghum improvement and production worldwide, especially when grain development coincides with wet and warm weather conditions (10). It is estimated that annual economic losses in Asia and Africa as a result of grain mold are in excess of US $130 million (13). In some cases, yield losses can reach 100% in highly susceptible cultivars (12). Apart from yield reduction, grain mold also reduces seed quality, with effects ranging from cosmetic deterioration of the pericarp to substantial deterioration of the endosperm and embryo with reduction in acceptability by food and feed processors (17). In addition to reducing the nutritional value, fungi that cause grain mold in sorghum may also produce mycotoxins (7), thus limiting the use of sorghum grain as food and feed (16). Molded sorghum grain fetches lower market prices and therefore affects the income of sorghum farmers (2).Ce...
Effect of temperature and humidity regimes on grain mold sporulation and seed quality in sorghum (Sorghum bicolor (L.) Moench) Abstract Grain mold, induced by a number of non-specific fungi, causes substantial loss to seed/grain yield and quality in sorghum (Sorghum bicolor (L.) Moench). Fungal sporulation and grain mold severity are greatly influenced by temperature and relative humidity (RH) levels. We studied the effects of three incubation temperatures (25, 27 and 288C) and two sets of RH levels (first set: 85, 90, 95, 98, and 100%, second set: 95, 96, 97, 98, 99 and 100%) on sporulation and grain mold severity in three major mold fungi (Curvularia lunata, Fusarium moniliforme, and Bipolaris australiensis) and on four each of resistant, moderately resistant and susceptible sorghum genotypes for sporulation and mold severity of major fungi. Results indicated that both fungal sporulation and grain mold severity increased on most sorghum genotypes with increasing incubation temperature from 25 -288C and RH levels from 95 -98%. A linear relationship was observed among RH levels, grain mold severity and fungal sporulation. The highest sporulation of all the three fungi occurred at 288C and 98% RH after 5 days of incubation. Among the three fungi, C. lunata grew and sporulated faster than B. australiensis and F. moniliforme, in that order. Among the sorghum genotypes, IS 25017 supported the least sporulation and had the lowest mold severity, followed by IS 8545 and PVK 801. Seed quality parameters, such as seed germination, seedling vigor index, field emergence potential, dehydrogenase and þ-amylase activities declined significantly with increasing temperature and RH levels that supported heavy sporulation and grain colonization.
Late leaf spot (LLS), caused by Phaeoisariopsis personata, is an important foliar fungal disease of groundnut (Arachis hypogaea L.), which causes significant economic losses globally to the crop. Inheritance of resistance to LLS disease was studied in three crosses and their reciprocals involving two resistant interspecific derivatives and a susceptible cultivar to refine strategy for LLS resistance breeding. The traits associated with LLS resistance, measured both in the field and under controlled conditions were studied following generation mean analysis. Results suggested that resistance to LLS is controlled by a combination of both, nuclear and maternal gene effects. Among nuclear gene effects, additive effect controlled majority of the variation. In JL 24 × ICG 11337 cross and its reciprocal only additive effects were important, while in JL 24 × ICG 13919 cross and its reciprocal, both additive and dominance effects contributed to the variation. Among digenic epistatic effects, additive × dominance interactions were significant. Additive-maternal effects were significant in both the crosses, while dominance-maternal effects also contributed to the variation in the crosses between the parents, JL 24 and ICG 13919. Due to significant contribution of additive effects of both nuclear and maternal inheritance to resistance to LLS, the parent, ICG 11337 would be a good donor in breeding programs. It would be worthwhile to use the resistance donor as female parent to tap maternal effects of resistance to LLS. Disease score is the best selection criterion in the field for use in breeding programs because of its high heritability and ease in measurement.
The construction of a set of controlled‐humidity chambers for single plants is described. Accurate control of relative humidity (r.h.) between 40% and 99% was achieved by mixing dry air with a saturated air stream using solenoid valves controlled by a programmable data logger. At values of r.h. >90%, mean values over periods greater than 1 min were constant to within ±0·1% and spot measurements at 3 s intervals were within 0‐3% of the mean value. The system responded to a step change of r.h. in about 6‐10 min and diurnal changes of r.h. were reproduced, similar to those observed in nature. The stability of control made it possible to differentiate between the requirement of liquid water and very high humidity (98% r.h.) for conidial germination and subsequent infection of groundnut by Phaeoisariopsis personata, the cause of late leaf spot disease.
Brewing industry releases large quantities of wastewater after product generation. Brewery wastewater contains organic compounds which are biodegradable in nature. These biodegradable wastes can be recycled and reused and hence considered as suitable products for agriculture. But before using wastewater for agriculture, it is better to evaluate the phytotoxic effects of wastewater on crops. Hence, the main objective of this study is to evaluate the effects of brewery effluent on seed germination and growth parameters of selected crop species like chickpea (Cicer arietinum), maize (Zea mays), and pigeon pea (Cajanus cajan). Study comprised seven types of water treatments-tap water as control, diluted UASBR effluent (50% effluent + 50% distilled water): UASBR50, undiluted UASBR effluent: UASBR100, diluted TC effluent (50% effluent + 50% distilled water): ETP50,TC effluent without dilution: ETP100, 10% diluted reverse osmosis (RO10) reject (10% RO reject + 90% distilled water), and 25% diluted reverse osmosis(RO25) reject (25% RO reject + 75% distilled water) with three replications in completely randomized design. Germination test was performed in petri plates for 5 days. Parameters like germination percentage, germination rate index, seedling length, phytotoxicity index, seed vigor index, and biomass were calculated. All parameters decreased with increase in respective effluent concentration. Among all treatments, RO25 showed highest inhibitory effect on all three crops. Even though undiluted effluent of UASBR and ETP effluent showed positive effect on germination, seedling growth of three crops was promoted to the maximum by UASBR50 and ETP50. Hence, from the study, it was concluded that dilution of brewery effluent can be recommended before using it for irrigational purpose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.