Understanding urea decomposition is critical to achieve highly efficient selective catalytic reduction (SCR). The urea decomposition process in an exhaust pipe and in Cu‐zeolite and vanadia‐SCR (V‐SCR) was studied in engine test cells. The unconverted urea at the SCR inlet can be substantial at lower temperatures. HNCO and NH3 are two dominant products at the SCR inlet. Urea and HNCO continue to decompose in SCR catalysts, with a rate much faster than in the homogeneous stream. The HNCO hydrolysis process is extremely efficient in Cu‐zeolite SCR and the abundant NH3 from urea overdosing can improve the NOx conversion efficiency. While for V‐SCR, the HNCO hydrolysis reaction can become the rate‐limiting step (especially after aging), abundant urea at low temperatures impairs NOx reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.