Development of disease-modifying therapeutics is urgently needed for treating Alzheimer disease (AD). AD is characterized by toxic β-amyloid (Aβ) peptides produced by β- and γ-secretase-mediated cleavage of the amyloid precursor protein (APP). β-secretase inhibitors reduce Aβ levels, but mechanism-based side effects arise because they also inhibit β-cleavage of non-amyloid substrates like Neuregulin. We report that β-secretase has a higher affinity for Neuregulin than it does for APP. Kinetic studies demonstrate that the affinities and catalytic efficiencies of β-secretase are higher toward non-amyloid substrates than toward APP. We show that non-amyloid substrates are processed by β-secretase in an endocytosis-independent manner. Exploiting this compartmentalization of substrates, we specifically target the endosomal β-secretase by an endosomally targeted β-secretase inhibitor, which blocked cleavage of APP but not non-amyloid substrates in many cell systems, including induced pluripotent stem cell (iPSC)-derived neurons. β-secretase inhibitors can be designed to specifically inhibit the Alzheimer process, enhancing their potential as AD therapeutics without undesired side effects.
A new class of polypeptide helices in hybrid sequences containing alpha-, beta-, and gamma-residues is described. The molecular conformations in crystals determined for the synthetic peptides Boc-Leu-Phe-Val-Aib-betaPhe-Leu-Phe-Val-OMe 1 (betaPhe: (S)-beta3-homophenylalanine) and Boc-Aib-Gpn-Aib-Gpn-OMe 2(Gpn: 1-(aminomethyl)cyclohexaneacetic acid) reveal expanded helical turns in the hybrid sequences (alpha alphabeta)n and (alphagamma)n. In 1, a repetitive helical structure composed of C14 hydrogen-bonded units is observed, whereas 2 provides an example of a repetitive C12 hydrogen-bonded structure. Using experimentally determined backbone torsion angles for the hydrogen-bonded units formed by hybrid sequences, we have generated energetically favorable hybrid helices. Conformational parameters are provided for C11, C12, C13, C14, and C15 helices in hybrid sequences.
Here, novel 12-helices in α,γ-hybrid peptides composed of achiral α-aminoisobutyric acid (Aib) and 4-aminoisocaproic acid (Aic, doubly homologated Aib) monomers in 1:1 alternation are reported. The 12-helices were indicated by solution and crystal structural analyses of tetra- and heptapeptides. Surprisingly, single crystals of the longer nonapeptide displayed two different helix types: the novel 12-helix and an unprecedented 15/17-helix. Quantum chemical calculations on both helix types in a series of continuously lengthened Aib/Aic-hybrid peptides confirm that the 12-helix is more stable than the 15/17-helix in shorter peptides, whereas the 15/17-helix is more stable in longer sequences. Thus, the coexistence of both helix types can be expected within a definite range of sequence lengths. The novel 15/17- and 12-helices in α,γ-hybrid peptides with 5→1 and 4→1 hydrogen-bonding patterns, respectively, can be viewed as backbone-expanded analogues of native α- and 3 -helices.
The impact of geometrically constrained cis α,β-unsaturated γ-amino acids on the folding of α,γ-hybrid peptides was investigated. Structure analysis in single crystals and in solution revealed that the cis carbon-carbon double bonds can be accommodated into the 12-helix without deviation from the overall helical conformation. The helical structures are stabilized by 4→1 hydrogen bonding in a similar manner to the 12-helices of β-peptides and the 310 helices of α-peptides. These results show that functional cis carbon-carbon double bonds can be accommodated into the backbone of helical peptides.
The solution and solid state conformations of a designed β-hairpin containing functionalizable α,β-unsaturated γ-amino acids at the antiparallel β-strands and a single step transformation to its saturated γ-peptide analogue are studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.