Objective: The present study was designed to evaluate the antioxidant and antityrosinase properties of zinc oxide nanoparticles (ZnO-NPs) synthesized from brown seaweed Turbinaria conoides.Methods: Zinc Oxide Nanoparticles were synthesized from the hydroethanolic extract of Turbinaria conoides. Ultraviolet-Visible Spectrophotometric analysis was performed to confirm the formation of ZnO-NPs. Size, morphology and elemental composition of ZnO-NPs were analysed using SEM-EDAX. The antioxidant activity of the synthesized zinc oxide nanoparticles was investigated by total antioxidant capacity (phosphomolybdenum method), reducing power assay and ferric reducing antioxidant power assay (FRAP). Anti tyrosinase activity was assessed to validate the skin whitening ability of the ZnO-NPs. Results:The antioxidant activity of ZnO-NPs synthesized from hydroethanolic extract of Turbinaria conoides was maximum when compared with that of the hydroethanolic algal extract. The antityrosinase activity of ZnO-NPs was found to be maximum with 75% tyrosinase inhibition when compared to hydroethanolic algal extract which had 56% inhibition at 250μg/ml concentration. Conclusion:Overall our study provides a firm evidence to support that antityrosinase and antioxidant activities are exhibited by ZnO-NPs synthesized from hydroethanolic extract of Turbinaria conoides and it might be used as an antioxidant and as a source of skin whitening agent in cosmetics.
In the present study, we aimed to evaluate the anticancer effect of zinc oxide nanoparticles (ZnO-NPs) synthesized from Turbinaria conoides against a murine model of Dalton's lymphoma ascites (DLA). Nanoparticles were synthesized from the hydroethanolic extract of T. conoides (HETC). An ultraviolet-visible spectrophotometric analysis was performed to confirm the formation of ZnO-NPs. Size, morphology, and elemental composition of ZnO-NPs were also analyzed using scanning electron microscopy-energy dispersive X-ray diffraction (SEM-EDX). Healthy Swiss albino mice were intraperitoneally induced with DLA cells and treated with ZnO-NPs and HETC at a dose of 50 μg/kg (p.o.). The effects of ZnO-NPs and HETC on body weight, tumor volume, hematological profile, and liver biochemical parameters were studied. The results of in vivo studies revealed that the treatment with ZnO-NPs and HETC decreased the tumor volume, thereby increasing the lifespan of DLA-bearing mice. The treatment also restored the alterations in hematological profile, antioxidant status, and activities of liver marker enzymes. These histopathological results provided the evidence for the protective effect of ZnO-NPs and HETC on DLA-induced mice. Thus, we conclude that ZnO-NPs possess more significant anticancer and antioxidant activities in DLA-bearing mice than HETC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.