CorrectionsBIOCHEMISTRY. For the article ''RNA degradosomes exist in vivo in Escherichia coli as multicomponent complexes associated with the cytoplasmic membrane via the N-terminal region of ribonuclease E'' by Gunn-Guang Liou, Wann-Neng Jane, Stanley N.
Newly generated neurons are continuously added to the olfactory epithelium and olfactory bulbs of adult mammals. Studies also report newly generated neurons in the piriform cortex, the primary cortical projection site of the olfactory bulbs. The current study used BrdU-injection paradigms, and in vivo and in vitro DiI tracing methods to address three fundamental issues of these cells: their origin, migratory route and fate. The results show that 1 day after a BrdU-injection, BrdU/DCX double-labeled cells appear deep to the ventricular subependyma, within the white matter. Such cells appear further ventral and caudal in the ensuing days, first appearing in the rostral piriform cortex of mice at 2 days after the BrdU-injection, and at 4 days in the rat. In the caudal piriform cortex, BrdU/DCX labeled cells first appear at 4 days after the injection in mice and 7 days in rats. The time it takes for these cells to appear in the piriform cortex and the temporal distribution pattern suggest that they migrate from outside this region. DiI tracing methods confirmed a migratory route to the piriform cortex from the ventricular subependyma. The presence of BrdU/NeuN labeled cells as early as 7 days after a BrdU injection in mice and 10 days in the rat and lasting as long as 41 days indicates that some of these cells have extended survival durations in the adult piriform cortex.
Seizures increase dentate granule cell proliferation in adult rats but decrease proliferation in young pups. The particular period and number of perinatal seizures required to cause newborn granule cell suppression in development are unknown. Therefore, we examined cell proliferation with bromodeoxyuridine (BrdU) immunohistochemistry during the peak of neurogenesis (e.g., P6 and P9) and at later postnatal ages (e.g., P13, P20, or P30) following single and multiple episodes of perinatal status epilepticus induced by kainate (KA). Because an inverse relationship exists between glucocorticosteroids (CORT) levels and granule cell proliferation, plasma CORT levels and electroencephalographic (EEG) activity were simultaneously monitored to elucidate underlying mechanisms that inhibit cell proliferation. In control animals, the number of BrdU-labeled cells increased then declined with maturation. After 1x KA or 2x KA administered on P6 and P9, the numbers of BrdU-labeled cells were not different from age-matched controls. However, rat pups with 3x KA (on P6, P9, and P13) had marked suppression of BrdU-labeled cells 48-72 h after the last seizure (43 +/- 6.5% of control). Cell proliferation was also significantly inhibited on P20 after 2x KA (to 56 +/- 6.9%) or 3x KA (to 54 +/- 7.9%) and on P30 with 3x KA (to 74.5 +/- 8.2% of age-matched controls). Cell death was not apparent as chromatin stains showed increased basophilia of only inner cells lining the granule cell layers, in the absence of eosinophilia, argyrophilia, or terminal deoxynucleotidyl dUTP nick endlabeling (TUNEL) labeling at times examined. In P13 pups with 3x KA, electron microscopy revealed an increased number of immature granule cells and putative stem cells with irregular shape, condensed cytoplasm, and electron dense nuclei, and they were also BrdU positive. The EEG showed no relationship between neurogenesis and duration of high-synchronous ictal activity. However, endocrine studies showed a correlation with BrdU number and age, sustained increases in circulating CORT levels following 1x KA on P6 (0.7 +/- 0.1 to 2.40 +/- 0.86 microg/dl), and cumulative increases that exceeded 10 microg/dl at 4-8 h after 3x KA on P13 or P20. In conclusion, a history of only one or two perinatal seizure(s) can suppress neurogenesis if a second or third seizure recurs after a critical developmental period associated with a marked surge in CORT. During the first 2 weeks of postnatal life sustained increases in postictal circulating CORT levels but not duration or intensity of ictal activity has long-term consequences on neurogenesis. The occurrence of an increased proportion of immature granule cells and putative stem cells with irregular morphology in the absence of neurodegeneration suggests that progenitors may not differentiate properly and remain in an immature state.
Endogenous neural stem cells have been identified in diverse areas of the adult mammalian central nervous system including the subventricular zone, cerebral cortex and hippocampus. These cells have been demonstrated to participate actively in postnatal neurogenesis in restricted territories within the adult brain. They have further been characterized as having a committed neural fate in vivo, capable of generating neurons, astroglia and oligodendroglia. Endogenous CNS stem cells, when cultured in vitro, have been shown to have a much broader potential, capable of differentiating into diverse tissues such as blood, muscle, bone and kidney. Conversely, stem cells taken from other organs and grown in vitro have been demonstrated to differentiate into neurons, and hematopoietic stem cells injected intravenously have been shown to migrate into mature CNS, and differentiate into neurons. We have previously reported the mobilization of endogenous neural stem cells in vivo. Further work to determine if the stem cells so mobilized may include hematopoietic stem cells is reported here. Using immunohistochemical localization of antigens known to be present on primitive hematopoietic stem cells, or antigens present on neural stem cells, we report the presence of cells closely resembling hematopoietic stem cells in the mature CNS whose response to a mobilization paradigm is similar to that of endogenous neural stem cells. We further propose a lineage relationship between primitive hematopoietic stem cells and neural stem cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.