Summary Arid ecosystems are often vulnerable to transformation to invasive‐dominated states following fire, but data on persistence of these states are sparse. The grass/fire cycle is a feedback process between invasive annual grasses and fire frequency that often leads to the formation of alternative vegetation states dominated by the invasive grasses. However, other components of fire regimes, such as burn severity, also have the potential to produce long‐term vegetation transformations. Our goal was to evaluate the influence of both fire frequency and burn severity on the transformation of woody‐dominated communities to communities dominated by invasive grasses in major elevation zones of the Mojave Desert of western North America. We used a chronosequence design to collect data on herbaceous and woody cover at 229 unburned reference plots and 578 plots that burned between 1972 and 2010. We stratified the plots by elevation zone (low, mid, high), fire frequency (1–3 times) and years post‐fire (YPF; 1–5, 6–10, 11–20 and 21–40 YPF). Burn severity for each plot was estimated by the difference normalized burn ratio. We identified two broad post‐fire successional pathways. One was an outcome of fire frequency, resulting in a strong potential transformation via the grass/fire cycle. The second pathway was driven by burn severity, the critical aspect being that long‐term transformation of a community could occur from just one fire in areas that burned at high or sometimes moderate severity. Dominance by invasive grasses was most likely to occur in low‐and high‐elevation communities; cover of native herbaceous species was often greater than that of invasive grasses in the mid‐elevation zone. Synthesis. Invasive grasses can dominate a site that burned only one time in many decades at high severity, or a site that burned at low severity but multiple times in the same time period. However, high burn severity may predispose areas to more frequent fire because they have relatively high cover of invasive annual grass, suggesting burn severity and fire frequency have both independent and synergistic effects. Resilience in vegetation structure following fire in many arid communities may be limited to a narrow window of low burn severity in areas that have not burned in many decades.
One of the major issues confronting management of parks and reserves is the invasion of non‐native plant species. Yosemite National Park is one of the largest and best‐known parks in the United States, harbouring significant cultural and ecological resources. Effective management of non‐natives would be greatly assisted by information on their potential distribution that can be generated by predictive modelling techniques. Our goal was to identify key environmental factors that were correlated with the percent cover of non‐native species and then develop a predictive model using the Genetic Algorithm for Rule‐set Production technique. We performed a series of analyses using community‐level data on species composition in 236 plots located throughout the park. A total of 41 non‐native species were recorded which occurred in 23.7% of the plots. Plots with non‐natives occurred most frequently at low‐ to mid‐elevations, in flat areas with other herbaceous species. Based on the community‐level results, we selected elevation, slope, and vegetation structure as inputs into the GARP model to predict the environmental niche of non‐native species. Verification of results was performed using plot data reserved from the model, which calculated the correct prediction of non‐native species occurrence as 76%. The majority of the western, lower‐elevation portion of the park was predicted to have relatively low levels of non‐native species occurrence, with highest concentrations predicted at the west and south entrances and in the Yosemite Valley. Distribution maps of predicted occurrences will be used by management to: efficiently target monitoring of non‐native species, prioritize control efforts according to the likelihood of non‐native occurrences, and inform decisions relating to the management of non‐native species in postfire environments. Our approach provides a valuable tool for assisting decision makers to better manage non‐native species, which can be readily adapted to target non‐native species in other locations.
Background: Distributional responses by alpine taxa to repeated, glacial-interglacial cycles throughout the last two million years have signi cantly in uenced the spatial genetic structure of populations. These effects have been exacerbated for the American pika (Ochotona princeps), a small alpine lagomorph constrained by thermal sensitivity and a limited dispersal capacity. As a species of conservation concern, long-term lack of gene ow has important consequences for landscape genetic structure and levels of diversity within populations. Here, we use reduced representation sequencing (ddRADseq) to provide a genome-wide perspective on patterns of genetic variation across pika populations representing distinct subspecies. To investigate how landscape and environmental features shape genetic variation, we collected genetic samples from distinct geographic regions as well as across ner spatial scales in two geographically proximate mountain ranges of eastern Nevada. Results: Our genome-wide analyses corroborate range-wide, mitochondrial subspeci c designations and reveal pronounced ne-scale population structure between the Ruby Mountains and East Humboldt Range of eastern Nevada. Populations in Nevada were characterized by low genetic diversity (=0.0006-0.0009; W =0.0005-0.0007) relative to populations in California (=0.0014-0.0019; W =0.0011-0.0017) and the Rocky Mountains (=0.0025-0.0027; W =0.0021-0.0024), indicating substantial genetic drift in these isolated populations. Tajima's D was positive for all sites (D=0.240-0.811), consistent with recent contraction in population sizes range-wide. Conclusions: Substantial in uences of geography, elevation and climate variables on genetic differentiation were also detected and may interact with the regional effects of anthropogenic climate change to force the loss of unique genetic lineages through continued population extirpations in the Great Basin and Sierra Nevada.
Despite their potential to provide mechanistic explanations of rates of seed dispersal and seed fate, the functional and numerical responses of seed predators have never been explicitly examined within this context. Therefore, we investigated the numerical response of a small-mammal seed predator, Heteromys desmarestianus, to disturbance-induced changes in food availability and evaluated the degree to which removal and fate of seeds of eight tree species in a lowland tropical forest in Belize were related to the functional response of H. desmarestianus to varying seed densities. Mark-recapture trapping was used to estimate abundance of H. desmarestianus in six 0.5-ha grids from July 2000 to September 2002. Fruit availability and seed fate were estimated in each grid, and two experiments nested within the grids were used to determine (1) the form of the functional response for nine levels of fruit density (2-32 fruits/m2), (2) the removal rate and handling times, and (3) the total proportion of fruits removed. The total proportion of fruits removed was determined primarily by the numerical response of H. desmarestianus to fruit availability, while removal rates and the proportion of seeds eaten or cached were related primarily to the form of the functional response. However, the numerical and functional responses interacted; H. desmarestianus showed strong spatial and temporal numerical responses to total fruit availability, and their density relative to fruit availability resulted in variation in the form of the functional response. Types I, II, and III functional responses were observed, as were density-independent responses, and these responses varied both among and within fruit species. The highest proportions of fruits were eaten when the Type III functional response was detected, which was when fruit availability was high relative to H. desmarestianus population density. Numerous idiosyncratic influences on seed fate have been documented, but our results indicate that shifts in the numerical and functional responses of seed predators to seasonal and interannual variation in seed availability potentially provide a general mechanistic explanation for patterns of removal and fate for vertebrate-dispersed seeds.
Granivore foraging decisions affect consumer success and determine the quantity and spatial pattern of seed survival. These decisions are influenced by environmental variation at spatial scales ranging from landscapes to local foraging patches. In a field experiment, the effects of seed patch variation across three spatial scales on seed removal by western harvester ants Pogonomyrmex occidentalis were evaluated. At the largest scale we assessed harvesting in different plant communities, at the intermediate scale we assessed harvesting at different distances from ant mounds, and at the smallest scale we assessed the effects of interactions among seed species in local seed neighborhoods on seed harvesting (i.e. resource-consumer interface). Selected seed species were presented alone (monospecific treatment) and in mixture with Bromus tectorum (cheatgrass; mixture treatment) at four distances from P. occidentalis mounds in adjacent intact sagebrush and non-native cheatgrass-dominated communities in the Great Basin, Utah, USA. Seed species differed in harvest, with B. tectorum being least preferred. Large and intermediate scale variation influenced harvest. More seeds were harvested in sagebrush than in cheatgrass-dominated communities (largest scale), and the quantity of seed harvested varied with distance from mounds (intermediate-scale), although the form of the distance effect differed between plant communities. At the smallest scale, seed neighborhood affected harvest, but the patterns differed among seed species considered. Ants harvested fewer seeds from mixed-seed neighborhoods than from monospecific neighborhoods, suggesting context dependence and potential associational resistance. Further, the effects of plant community and distance from mound on seed harvest in mixtures differed from their effects in monospecific treatments. Beyond the local seed neighborhood, selection of seed resources is better understood by simultaneously evaluating removal at multiple scales. Associational effects provide a useful theoretical basis for better understanding harvester ant foraging decisions. These results demonstrate the importance of ecological context for seed removal, which has implications for seed pools, plant populations and communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.