We have measured the wake fields induced by short, intense relativistic electron bunches in a slowwave structure consisting of a dielectric-lined tube, as a test of the dielectric wake-field acceleration mechanism. These fields were used to accelerate a second electron bunch which followed the driving bunch at a variable distance. Results are presented for different dielectrics and beam intensities, and are compared with theoretical predictions.PACS numbers: 52.75.Di
We report a new regime of single-surface multipactor that was observed during high-power testing of an 11.424-GHz alumina-based dielectric-loaded accelerating structure. Previous experimental observations of single-surface multipactor on a dielectric occurred in cases for which the rf electric field was tangential and the rf power flow was normal to the dielectric surface (such as on rf windows) and found that the fraction of power absorbed at saturation is approximately 1%, independent of the incident power. In this new regime, in which strong normal and tangential rf electric fields are present and the power flow is parallel to the surface, the fraction of power absorbed at saturation is an increasing function of the incident power, and more than half of the incident power can be absorbed. A simple model is presented to explain the experimental results.
(To be published in Physical Review E)We report on measurements of 11-18 cm wavelength radio emission from interactions of 15.2 MeV pulsed electron bunches at the Argonne Wakefield Accelerator. The electrons were observed both in a configuration where they produced primarily transition radiation from an aluminum foil, and in a configuration designed for the electrons to produce Cherenkov radiation in a silica sand target. Our aim was to emulate the large electron excess expected to develop during an electromagnetic cascade initiated by an ultra-high-energy particle. Such charge asymmetries are predicted to produce strong coherent radio pulses, which are the basis for several experiments to detect high-energy neutrinos from the showers they induce in Antarctic ice and in the lunar regolith. We detected coherent emission which we attribute both to transition and possibly Cherenkov radiation at different levels depending on the experimental conditions. We discuss implications for experiments relying on radio emission for detection of electromagnetic cascades produced by ultra highenergy neutrinos.
In experimental studies of the Plasma Wake-field Accelerator performed to date at the Argonne Advanced Accelerator Test Facilit,y, significant nonlinearities in both plasma and beam behavior have been observed. The plasma wares driven in the make of the intense driving beam in these experiments exhibit three-dimensional nonlinear behavior which has as yet no quantitative theoretical explanation. This nonlinearity is due in part to the self-pinching of the driving beam in the plasma, as the the denser self-focused beam can excite larger amplitude plasma waves. Th e se lf-pinching is a process with interesting nonlinear aspects: the initial evolution of the beam envelope and the subsequent approach to Bennett equilibrium through phase mixing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.