Summary.A sequence of general Hermite trigonometric interpolation polynomials with equidistant interpolation points is given. Integrating these interpolation formulae a sequence of quadrature formulae for the integration of periodic functions is obtained. Derivative-flee remainders are stated for these interpolation and quadrature formulae.Given an analytic function/: ]R-->• with period 2z~ we consider the sequence T~,,,,(/), p -----0, t, 2 ..... n = t, 2, ..., of general Hermite trigonometric interpolation polynomials of order (p + t)n with prescribed values
Summary. Brakhage and Werner, Leis and Panich suggested to reduce the exterior Dirichlet boundary value problem for the Helmholtz equation to an integral equation of the second kind which is uniquely solvable for all frequencies by seeking the solution in the form of a combined double-and single-layer potential. We present an analysis of the appropriate choice of the parameter coupling the double-and single-layer potential in order to minimize the condition number of the integral operator.
New estimates for the error of the trapezoidal rule applied to the integration of periodic analytic functions are obtained by Davis' method using a double as well as a line integral norm. In dieser Note wird die auf Davis [t, 21 zuriickgehende funktionalanalytische Methode benutzt, um neue optimale SchrankeI1 fiir den Fehler 2n / t' hEN, 0 bei der Integration 2:z-periodischer analytischer Funktionen/: [0, 2ul-+~E nach der Rechteckregel zu gewinnen. Da / in ein geeignetes Rechteck G~.'= {z=x +iy, O~x~2u, --a~ y~a} der Breite 2a>0 holomorph fortsetzbar ist, liegt es nahe, als Holomorphiebereiche ftir die Davissche Methode im vorliegenden Fall ein solches Rechteck G~ zu w/ihlen. Als Integrationsbereiche tiir die zu bildenden inneren Produkte bzw. Normen bieten sich das Rechteck G~ und die horizontale Berandung H~.= {z=x+iy, O<=x~2:~, ly[=a} von G, an.Wit betrachten zun~chst den Fall des mit einem Gebietsintegral erzeugten inneren Produktes. Es sei L 2 (Ga) der lineare Raum aller 2~-periodischen holomorphen Funktionen /: G, --H a-+tE, ffir die auBerdem (2) fft/(z)l~dxdy:= lim ffl/(~)12a.ay
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.