Abstract. Constructing 3D models for trees such as those found in Japanese gardens, in which many species exist, requires the generation of tree shapes that combine the characteristics of the tree's species and natural diversity. Therefore, this study proposes a method for constructing a 3D tree model with highly-accurate tree shape reproducibility from tree point cloud data acquired by TLS. As a method, we attempted to construct a 3D tree model using the TreeQSM, which is open source for TLS-QSM method. However, in TreeQSM, since processing is based on the assumption that the tree point cloud consists of data related to trunks and branches, measuring trees in which leaves have fallen is recommended. To solve this problem, we proposed an efficient classification process that mainly uses thresholds for deviation and reflectance, which are the adjunct data of the object that can be acquired by laser measurement. Furthermore, to verify accuracy of the model, position coordinates from the constructed 3D tree model were extracted. The extracted coordinates were compared with the those of the tree point cloud data to clarify the extent to which the 3D tree model was constructed from the tree point cloud data. As a result, the 3D tree model was constructed within the standard deviation of 0.016 m from the tree point cloud data. Therefore, the reproducibility of the tree shape by the TLS-QSM method was also effective in terms of accuracy.
Commission V/WG 4 KEY WORDS: terrestrial laser survey, drawing of ground plan, landscape simulation, extract contour lines ABSTRACT:Recently, many laser scanners are applied for various measurement fields. This paper investigates that it was useful to use the terrestrial laser scanner in the field of landscape architecture and examined a usage in Japanese garden. As for the use of 3D point cloud data in the Japanese garden, it is the visual use such as the animations. Therefore, some applications of the 3D point cloud data was investigated that are as follows. Firstly, ortho image of the Japanese garden could be outputted for the 3D point cloud data. Secondly, contour lines of the Japanese garden also could be extracted, and drawing was became possible. Consequently, drawing of Japanese garden was realized more efficiency due to achievement of laborsaving. Moreover, operation of the measurement and drawing could be performed without technical skills, and any observers can be operated. Furthermore, 3D point cloud data could be edited, and some landscape simulations that extraction and placement of tree or some objects were became possible. As a result, it can be said that the terrestrial laser scanner will be applied in landscape architecture field more widely. * Corresponding author. This is useful to know for communication with the appropriate person in cases with more than one author.
Constructing 3D models for trees such as those found in Japanese gardens, in which many species exist, requires the generation of tree shapes that combine the characteristics of the tree's species and natural diversity. Therefore, this study proposes a method for constructing a 3D tree model with highly-accurate tree shape reproducibility from tree point cloud data acquired by TLS. As a method, we attempted to construct a 3D tree model using the TreeQSM, which is open source for TLS-QSM method. However, in TreeQSM, since processing is based on the assumption that the tree point cloud consists of data related to trunks and branches, measuring trees in which leaves have fallen is recommended. To solve this problem, we proposed an efficient classification process that mainly uses thresholds for deviation and reflectance, which are the adjunct data of the object that can be acquired by laser measurement. Furthermore, to verify accuracy of the model, position coordinates from the constructed 3D tree model were extracted. The extracted coordinates were compared with the those of the tree point cloud data to clarify the extent to which the 3D tree model was constructed from the tree point cloud data. As a result, the 3D tree model was constructed within the standard deviation of 0.016 m from the tree point cloud data. Therefore, the reproducibility of the tree shape by the TLS-QSM method was also effective in terms of accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.