Gardens play a key role in the definition of the cultural landscape since they reflect the culture, identity, and history of a people. They also contribute to the ecological balance of the city. Despite the fact that gardens have an historic and social value, they are not protected as much as the rest of the existing heritage, such as architecture and archaeological sites. While methods of built-heritage mapping and monitoring are increasing and constantly improving to reduce built-heritage loss and the severe impact of natural disasters, the documentation and survey techniques for gardens are often antiquated. In addition, inventories are typically made by non-updated/updateable reports, and they are rarely in digital format or in 3D. This paper presents the results of a comprehensive study on the latest technology for laser scanning in gardens. We compared static terrestrial laser scanning and mobile laser scanning point clouds generated by the Focus 3D S120 and the Leica BLK2GO, respectively, to evaluate their quality for documentation, estimate tree attributes, and terrain morphology. The evaluation is based on visual observation, C2C comparisons, and terrain information extraction capabilities, i.e., M3C2 comparisons for topography, DTM generation, and contour lines. Both methods produced useful outcomes for the scope of the research within their limitations. Terrestrial laser scanning is still the method that offers accurate point clouds with a higher point density and less noise. However, the more recent mobile laser scanning is able to survey in less time, significantly reducing the costs for site activities, data post-production, and registration. Both methods have their own restrictions that are amplified by site features, mainly the lack of plans for the geometric alignment of scans and the simultaneous location and mapping (SLAM) process. We offer a critical description of the issues related to the functionality of the two sensors, such as the operative range limit, light dependency, scanning time, point cloud completeness and size, and noise level.