Large particles containing nitric acid (HNO3) were observed in the 1999/2000 Arctic winter stratosphere. These in situ observations were made over a large altitude range (16 to 21 kilometers) and horizontal extent (1800 kilometers) on several airborne sampling flights during a period of several weeks. With diameters of 10 to 20 micrometers, these sedimenting particles have significant potential to denitrify the lower stratosphere. A microphysical model of nitric acid trihydrate particles is able to simulate the growth and sedimentation of these large sizes in the lower stratosphere, but the nucleation process is not yet known. Accurate modeling of the formation of these large particles is essential for understanding Arctic denitrification and predicting future Arctic ozone abundances.
Abstract. The microphysical and radiative properties of cirrus clouds continue to be beyond understanding and thus still represent one of the largest uncertainties in the prediction of the Earth's climate (IPCC, 2013). Our study aims to provide a guide to cirrus microphysics, which is compiled from an extensive set of model simulations, covering the broad range of atmospheric conditions for cirrus formation and evolution. The model results are portrayed in the same parameter space as field measurements, i.e., in the Ice Water ContentTemperature (IWC-T) parameter space. We validate this cirrus analysis approach by evaluating cirrus data sets from 17 aircraft campaigns, conducted in the last 15 years, spending about 94 h in cirrus over Europe, Australia, Brazil as well as South and North America. Altogether, the approach of this study is to track cirrus IWC development with temperature by means of model simulations, compare with observations and then assign, to a certain degree, cirrus microphysics to the observations. Indeed, the field observations show characteristics expected from the simulated Cirrus Guide. For example, high (low) IWCs are found together with high (low) ice crystal concentrations N ice .An important finding from our study is the classification of two types of cirrus with differing formation mechanisms and microphysical properties: the first cirrus type forms directly as ice (in situ origin cirrus) and splits in two subclasses, depending on the prevailing strength of the updraft: in slow updrafts these cirrus are rather thin with lower IWCs, while in fast updrafts thicker cirrus with higher IWCs can form. The second type consists predominantly of thick cirrus originating from mixed phase clouds (i.e., via freezing of liquid droplets -liquid origin cirrus), which are completely glaciated while lifting to the cirrus formation temperature region (< 235 K). In the European field campaigns, slow updraft in situ origin cirrus occur frequently in low-and high-pressure systems, while fast updraft in situ cirrus appear in conjunction with jet streams or gravity waves. Also, liquid origin cirrus mostly related to warm conveyor belts are found. In the US and tropical campaigns, thick liquid origin cirrus which are formed in large convective systems are detected more frequently.
[1] The validation of version 2.2 (v2.2) H 2 O measurements from the Earth Observing System (EOS) Microwave Limb Sounder (Aura MLS) on the Aura satellite are presented.Results from comparisons made with Aqua Atmospheric Infrared Sounder (AIRS), Vaisala radiosondes, frost point hygrometer, and WB57 aircraft hygrometers are presented. Comparisons with the Aura MLS v1.5 H 2 O, Goddard global modeling and assimilation office Earth Observing System analyses (GEOS-5) are also discussed. For H 2 O mixing ratios less than 500 ppmv, the MLS v2.2 has an accuracy better than 25% between 316 and 147 hPa. The precision is 65% at 316 hPa that reduces to 25% at 147 hPa. This performance is better than expected from MLS measurement systematic error analyses. MLS overestimates H 2 O for mixing ratios greater than 500 ppmv which is consistent with a scaling error in either the calibrated or calculated MLS radiances. The validation of the accuracy of MLS v2.2 H 2 O from 121 to 83 hPa which is expected to be better than 15% cannot be confirmed at this time because of large disagreements among the hygrometers used in the AVE campaigns. The precision of the v2.2 H 2 O from 121 to 83 hPa is 10-20%. The vertical resolution is 1.5-3.5 km depending on height. The horizontal resolution is 210 Â 7 km 2 along and perpendicular to the Aura orbit track, respectively. Relative humidity is calculated from H 2 O and temperature. The precision, accuracy, and spatial resolution are worse than for H 2 O.Citation: Read, W. G., et al. (2007), Aura Microwave Limb Sounder upper tropospheric and lower stratospheric H 2 O and relative humidity with respect to ice validation,
Abstract. Accurate mean ages for stratospheric air have been derived from a spatially and temporally comprehensive set of in situ observations of CO2, CH4, and N20 obtained from 1992 to 1998 from the NASA ER-2 aircraft and balloon flights. Errors associated with the tropospheric CO2 seasonal cycle and interannual variations in the CO2 growth rate are ( 0.5 year throughout the stratosphere and ( 0.3 year for air older than 2 years (N20 < 275 ppbv), indicating that the age spectra are broad enough to attenuate these influences over the time period covered by these observations. The distribution of mean age with latitude and altitude provides detailed, quantitative information about the general circulation of the stratosphere. At 20 km, sharp meridional gradients in the mean age are observed across the subtropics. Between 20 and 30 km, the average difference in mean age between the tropics and midlatitudes is -2 years, with slightly smaller differences at higher and lower altitudes. The mean age in the midlatitude middle stratosphere (-25-32 km) is relatively constant with respect to altitude at 5 _ 0.5 years. Comparison with earlier balloon observations of CO2 dating back to the 1970s indicates that the mean age of air in this region has remained within _+1 year of its current value over the last 25 years. A climatology of mean age is derived from the observed compact relationship between mean age and N20. These characteristics of the distribution of mean age in the stratosphere will serve as critically needed diagnostics for models of stratospheric transport.
[1] We present global, vertical profile estimates of the HDO/H 2 O ratio from the Tropospheric Emission Spectrometer (TES) on the Earth Observing System (EOS) Aura satellite. We emphasize in this paper the estimation approach and error characterization, which are critical to determining the very small absolute concentration of HDO relative to H 2 O and its uncertainty. These estimates were made from TES nadir-viewing (downlooking) thermal infrared spectral radiances observed on 20 September 2004. Profiles of HDO and H 2 O are simultaneously estimated from the observed radiances and a profile of the ratio is then calculated. This simultaneous, or ''joint,'' estimate is regularized with an a priori covariance matrix that includes expected correlations between HDO and H 2 O. This approach minimizes errors in the profile of the HDO/H 2 O ratio that are due to overlapping HDO and H 2 O spectroscopic lines. Under clear-sky conditions in the tropics, TES estimates of the HDO/H 2 O ratio are sensitive to the distribution of the actual ratio between the surface and about 300 hPa with peak sensitivity at 700 hPa. The sensitivity decreases with latitude through its dependence on temperature and water amount. We estimate a precision of approximately 1% to 2% for the ratio of the HDO/H 2 O tropospheric densities; however, there is possibly a bias of approximately 5% in the ratio due to the HDO spectroscopic line strengths. These global observations clearly show increased isotopic depletion of water vapor at higher latitudes as well as increased depletion in the upper troposphere versus the lower troposphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.