The catalytic activity of acid-treated clays for reactions involving polar substrates is optimized when the acidity of the surface and the swelling ability of the catalyst are at a maximum. In contrast the activity for reactions using nonpolar substrates is best when the surface area is maximized and the catalyst presents an essentially hydrophobic surface which serves to attract the nonpolar reagents. We have investigated the catalytic ability of acid-activated organoclays (AAOCs) which should provide reasonable levels of acidity, hydrophobicity, and swelling ability for use with nonpolar reagents. A range of organoclays containing tetramethylammonium, dodecyltrimethylammonium, or octadecyltrimethylammonium cations at the 25, 50, or 100% exchange level were prepared and subjected to selected acid-leaching procedures at either 20 or 95 °C. The activity of these AAOCs for the conversion of R-pinene to camphene was investigated. The conditions used for acid leaching seldom removed extensive amounts of organocation, and the yields (40% conversion to camphene) compared favorably with those reported for pillared clays. Acid-leached tetramethylammonium clays were the most active with yields four times higher than those for the corresponding parent clay. Acid-leached dodecyltrimethylammonium and octadecyltrimethylammonium clays were only active when the organocations occupied 25% of the exchange sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.