Anthropogenic aerosols are composed of a variety of aerosol types and components including water-soluble inorganic species (e.g., sulfate, nitrate, ammonium), condensed organic species, elemental or black carbon, and mineral dust. Previous estimates of the clear sky forcing by anthropogenic sulfate aerosols and by organic biomass-burning aerosols indicate that this forcing is of sufficient magnitude to mask the effects of anthropogenic greenhouse gases over large regions. Here, the uncertainty in the forcing by these aerosol types is estimated. The clear sky forcing by other anthropogenic aerosol components cannot be estimated with confidence, although the forcing by these aerosol types appears to be smaller than that by sulfate and biomass-burning aerosols.The cloudy sky forcing by anthropogenic aerosols, wherein aerosol cloud condensation nuclei concentrations are increased, thereby increasing cloud droplet concentrations and cloud albedo and possibly influencing cloud persistence, may also be significant. In contrast to the situation with the clear sky forcing, estimates of the cloudy sky forcing by anthropogenic aerosols are little more than guesses, and it is not possible to quantify the uncertainty of the estimates.In view of present concerns over greenhouse gas-induced climate change, this situation dictates the need to quantify the forcing by anthropogenic aerosols and to define and minimize uncertainties in the calculated forcings. In this article, a research strategy for improving the estimates of the clear sky forcing is defined. The strategy encompasses five major, and necessarily coordinated, activities: surface-based observations of aerosol chemical and physical properties and their influence on the radiation field; aircraft-based observations of the same properties; process studies to refine model
The collapse of the World Trade Center (WTC) buildings #2 (South Tower), #1 (North Tower), and #7 created an enormous collapse pile which emitted intense plumes of acrid smoke and dust until roughly mid-December, when the last spontaneous surface fire occurred. We collected particles by size (8 modes, ≈12 to 0.09 micrometers diameter) and time (typical resolution of 1 to 3 h) from October 2 until late December at the EML 201 Varick Street site roughly 1.8 km NNE of the collapse site and 50 m above ground level. Here we show some of the 70,000 mass and elemental data from the time period October 2 through October 30. Identification of a WTC collapse pile source for aerosols seen at the receptor site were based upon the simultaneous presence of finely powdered concrete, gypsum, and glass with intense very fine combustion mode mass episodes concurrent with winds from the southwest
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.