The U.S. Naval Research Laboratory (NRL) Multichannel Synthetic Aperture Radar (MSAR) consists of multiple receive channels arranged along the flight direction and is unique in its ability to measure and correct for radial motion at each pixel in the scene. A well-known algorithm for performing MSAR imaging, and which have we applied for the first time to data captured by an airborne system, is the Velocity Synthetic Aperture Radar (VSAR) algorithm. VSAR calculates the distribution of Doppler radial velocities associated with each pixel and subsequently compensates for the velocities in order to combat motion blur. However, as we demonstrate in this paper, the VSAR algorithm does not fully exploit the special structure associated with the motion dynamics of rigid bodies (including translational and roll-pitch-yaw motions) in maritime conditions. To this end we propose the use of Inverse Synthetic Aperture Radar (ISAR) based motion compensation techniques-in conjunction with velocity filtering-as a means of accomplishing this objective for MSAR imaging. After describing the rudiments of the NRL MSAR system and the basics of ISAR processing, we subsequently proceed to describe our proposed Velocity-ISAR (VISAR) imaging algorithm. We demonstrate the performance of our VISAR algorithm by imaging boats captured by our airborne NRL MSAR system; and highlight its relative advantages over VSAR in imaging maritime targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.