Nanostructured reactive foils have attracted a great deal of interest recently due to their unique mechanical and thermal properties. Reactive thin foil can be used as a controllable, localized heating source for joining applications, which enable soldering and brazing of materials at room temperature. In this paper, multiphysics-based numerical simulations were performed to simulate reactive thin foils. The conductive heat transfer equation and mass diffusion equations were solved for 1D, 2D, and 3D cases. 1D simulation examined the effect of the chemical reaction rate on the flame speed; 2D simulation gave the detailed temperature and composition distribution in the bi-layers; and 3D simulation demonstrated the localized heating effect of reactive thin foils on a silicon wafer substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.